




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.AAS C.ASA D.SSS2.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.43.点P(-2,3)到x轴的距离是()A.2 B.3 C. D.54.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定5.如图,已知△ABC是等边三角形,点B、C,D、E在同一直线上,且CG=CD,DF=DE,则∠E=()A.30° B.25° C.15° D.10°6.下列语句是命题的是()(1)两点之间,线段最短;(2)如果两个角的和是90度,那么这两个角互余.(3)请画出两条互相平行的直线;(4)过直线外一点作已知直线的垂线;A.(1)(2) B.(3)(4) C.(2)(3) D.(1)(4)7.如图,A、C是函数的图象上任意两点,过点A作y轴的垂线,垂足为B,过点C作y轴的垂线,垂足为D.记的面积为,的面积为,则和的大小关系是()A. B.C. D.由A、C两点的位置确定8.的值是()A.8 B.-8 C.2 D.-29.如图,阴影部分搪住的点的坐标可能是()A.(6,2) B.(-5,3)C.(-3,-5) D.(4,-3)10.在实数中,无理数的个数为()A.1个 B.2个 C.3个 D.4个11.如图,圆的直径为1个单位长度,圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动一周,点A到达的位置,则点表示的数是()A. B. C. D.12.当一个多边形的边数增加时,它的内角和与外角和的差()A.增大 B.不变 C.减小 D.以上都有可能二、填空题(每题4分,共24分)13.如图△ABC中,∠ABC、∠ACB的平分线相交于点O,若∠A=100°,则∠BOC=____o.14.把因式分解的结果是______.15.如图,在△ABC中,D是BC上的点,且AB=AC,BD=AD,AC=DC,那么∠B=_____.16.如图,在等边三角形中,,点为边的中点,点为边上的任意一点(不与点重合),将沿折叠使点恰好落在等边三角形的边上,则的长为_______cm.17.如图,已知的面积为,平分,且于点,则的面积是____________.18.分式化为最简分式的结果是__________________.三、解答题(共78分)19.(8分)已知:如图,,点是的中点,平分,.(1)求证:;(2)若,试判断的形状,并说明理由.20.(8分)求证:有两个角和其中一个角的角平分线对应相等的两个三角形全等.21.(8分)(1)计算:;(2)先化简,然后从的范围内选取一个合适的整数作为的值带入求值.22.(10分)(1)计算:;(2)先化简,再求值:,其中.23.(10分)如图所示,在中,,,是边上的高.求线段的长.24.(10分)(1)分解下列因式,将结果直接写在横线上:x2+4x+4=,16x2+24x+9=,9x2﹣12x+4=(2)观察以上三个多项式的系数,有42=4×1×4,242=4×16×9,(﹣12)2=4×9×4,于是小明猜测:若多项式ax2+bx+c(a>0)是完全平方式,则实数系数a、b、c一定存在某种关系.①请你用数学式子表示a、b、c之间的关系;②解决问题:若多项式x2﹣2(m﹣3)x+(10﹣6m)是一个完全平方式,求m的值.25.(12分)如图,已知,,.(1)作关于轴的对称图形;(2)为轴上一点,请在图中找出使的周长最小时的点并直接写出此时点的坐标(保留作图痕迹)26.如图,中,BD平分,于点E,于F,,,,求DE长.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据三角形全等的判定与性质即可得出答案.【详解】解:根据作法可知:OC=O′C′,OD=O′D′,DC=D′C′∴△OCD≌△O′C′D′(SSS)∴∠COD=∠C′O′D′∴∠AOB=∠A′O′B′故选D.【点睛】本题考查的是三角形全等,属于基础题型,需要熟练掌握三角形全等的判定与性质.2、D【详解】①根据作图的过程可知,AD是∠BAC的平分线.故①正确.②如图,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.③∵∠1=∠B=10°,∴AD=BD.∴点D在AB的中垂线上.故③正确.④∵如图,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•AD.∴S△DAC:S△ABC.故④正确.综上所述,正确的结论是:①②③④,,共有4个.故选D.3、B【解析】直接利用点的坐标性质得出答案.【详解】点P(-2,1)到x轴的距离是:1.故选B.【点睛】此题主要考查了点的坐标,正确把握点的坐标性质是解题关键.4、B【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.5、C【详解】解:∵CG=CD,DF=DE,∴∠CGD=∠CDG,∠DEF=∠DFE,∵∠ACB=2∠CDG,∴∠CDG=30∵∠CDG=2∠E,∴∠E=156、A【分析】判断一件事情的语句叫命题,命题都由题设和结论两部分组成,依此对四个小题进行逐一分析即可;【详解】(1)两点之间,线段最短符合命题定义,正确;(2)如果两个角的和是90度,那么这两个角互余,符合命题定义,正确.(3)请画出两条互相平行的直线只是做了陈述,不是命题,错误;(4)过直线外一点作已知直线的垂线没有做出判断,不是命题,错误,故选:A.【点睛】本题考查了命题的概念:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.注意命题是一个能够判断真假的陈述句.7、C【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=k|.【详解】由题意得:S1=S2=|k|=.故选:C.【点睛】本题主要考查了反比例函数y=中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,是经常考查的一个知识点;这里体现了数形结合的思想.8、B【分析】根据立方根进行计算即可;【详解】∵,∴;故选B.【点睛】本题主要考查了立方根,掌握立方根的运算是解题的关键.9、D【分析】根据坐标系可得阴影部分遮住的点在第四象限,再确定答案即可.【详解】阴影部分遮住的点在第四象限,
A、(6,2)在第一象限,故此选项错误;
B、(-5,3)在第二象限,故此选项错误;
C、(-3,-5)在第三象限,故此选项错误;
D、(4,-3)在第四象限,故此选项正确;
故选:D.【点睛】本题主要考查了点的坐标,关键是掌握四个象限内点的坐标符号.10、B【分析】根据无理数的概念逐一进行判定即可.【详解】都是有理数,是无理数所以无理数有2个故选:B.【点睛】本题主要考查无理数,能够区别有理数与无理数是解题的关键.11、D【解析】先求出圆的周长,再根据数轴的特点进行解答即可.【详解】∵圆的直径为1个单位长度,∴此圆的周长=π,∴当圆向左滚动时点A′表示的数是-π-1;当圆向右滚动时点A′表示的数是π-1.故选:D.【点睛】本题考查的是实数与数轴的特点,熟知实数与数轴上的点是一一对应关系是解答此题的关键.12、A【分析】设多边形的边数为n,求出多边形的内角和与外角和的差,然后根据一次函数的增减性即可判断.【详解】解:设多边形的边数为n则多边形的内角和为180°(n-2),多边形的外角和为360°∴多边形的内角和与外角和的差为180(n-2)-360=180n-720∵180>0∴多边形的内角和与外角和的差会随着n的增大而增大故选A.【点睛】此题考查的是多边形的内角和、外角和和一次函数的增减性,掌握多边形的内角和公式、任何多边形的外角和都等于360°和一次函数的增减性与系数的关系是解决此题的关键.二、填空题(每题4分,共24分)13、1【分析】根据三角形内角和定理得,再根据角平分线的性质可得,最后根据三角形内角和定理即可求出∠BOC的度数.【详解】∵∠A=100°∴∵∠ABC、∠ACB的平分线相交于点O∴∴故答案为:1.【点睛】本题考查了角平分线相关的计算题,掌握三角形内角和定理、角平分线的性质是解题的关键.14、3a(b-1)1【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=3a(b1-1b+1)=3a(b-1)1,
故答案为:3a(b-1)1.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15、36°【分析】先设∠B=x,由AB=AC可知,∠C=x,由AD=DB可知∠B=∠DAB=x,由三角形外角的性质可知∠ADC=∠B+∠DAB=2x,根据AC=CD可知∠ADC=∠CAD=2x,再在△ACD中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值即可.【详解】解:设∠B=x,∵AB=AC,∴∠C=∠B=x,∵AD=DB,∴∠B=∠DAB=x,∴∠ADC=∠B+∠DAB=2x,∵AC=CD,∴∠ADC=∠CAD=2x,在△ACD中,∠C=x,∠ADC=∠CAD=2x,∴x+2x+2x=180°,解得x=36°.∴∠B=36°.故答案为:36°.【点睛】本题考查了等腰三角形等边等角的性质,三角形外角的性质,三角形内角和定理,掌握等腰三角形的性质是解题的关键.16、或【分析】如图1,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边AB上时,于是得到MN⊥AB,BN=BN′,根据等边三角形的性质得到AC=BC,∠ABC=60°,根据线段中点的定义得到BN=BM=,如图2,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边A,C上时,则MN⊥BB′,四边形BMB′N是菱形,根据线段中点的定义即可得到结论.【详解】解:如图1,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边AB上时,则MN⊥AB,BN=BN′,∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=60°,∵点M为边BC的中点,∴BM=BC=AB=,∴BN=BM=,如图2,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边A,C上时,则MN⊥BB′,四边形BMB′N是菱形,∵∠ABC=60°,点M为边BC的中点,∴BN=BM=BC=AB=,,故答案为:或.【点睛】本题考查了轴对称的性质,等边三角形的性质,菱形的判定和性质,分类讨论是解题的关键.17、9【分析】延长AP交BC于D点,可证△APB≌△DPB,可得AP=PD,△APC的面积等于△CPD的面积,利用面积的加减可得△BPC的面积是△ABC面积的一半.【详解】延长AP交BC于D点,∵平分,且∴∠APB=∠DPB,∠APB=∠BPD=90°又BP=BP∴△APB≌△DPB(ASA)∴AP=PD,S△APB=S△BPD∴S△APC=S△PCD∴S△APB+S△APC=S△BPD+S△PCD∴S△BPC==9故答案为:9【点睛】本题考查的是三角形的全等及三角形的面积,掌握等底等高的三角形面积相等是关键.18、【分析】根据被开方数不含分母;被开方数不含能开的尽方的因数或因式的二次根式为最简二次根式,进行化简即可。【详解】因为有意义,所以,所以【点睛】本题考查的是根式有意义的条件和最简二次根式的意义,能够判断出是解题的关键。三、解答题(共78分)19、(1)见解析;(2)△ABC为等边三角形【分析】(1)根据三线合一定理,得AD⊥BD,由角平分线的性质定理,得BE=BD,即可得到,即可得到结论;(2)由BE∥AC,则∠EAC=∠E=90°,由角平分线的性质,得到∠EAB=∠BAD=∠CAD=30°,则∠BAC=60°,即可得到答案.【详解】(1)证明:如图,∵AB=AC,点D是BC中点∴AD⊥BD∵AB平分∠DAE,AE⊥BE∴BE=BD∴∴AD=AE;(2)解:△ABC为等边三角形∵BE∥AC∴∠EAC=∠E=90°∵AB=AC,AD是中线∴AD平分∠BAC∵AB平分∠DAE∴∠EAB=∠BAD=∠CAD=30°∴∠BAC=∠BAD+∠CAD=60°∵AB=AC∴△ABC是等边三角形.【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,角平分线的性质定理,解题的关键是熟练掌握所学的知识进行解题.20、见解析【分析】将原命题写出已知和求证,然后进行证明,根据角平分线定义可得∠ABD=∠A′B′D′=∠ABC,然后证明△ABD≌△A′B′D′可得AB=A′B′,再证明△ABC≌△A′B′C′即可.【详解】已知:△ABC和△A′B′C′中,∠A=∠A',∠ABC=∠A'B′C′,∠ABC、∠A'B′C′的角平分线BD=B′D′,
求证:△ABC≌△A′B′C′.
证明:∵∠ABC=∠A'B′C′且∠ABC、∠A'B′C′的角平分线分别为BD和B′D′,
∴∠ABD=∠A′B′D′=∠ABC,∵在△ABD和△A′B′D′中,
∴△ABD≌△A′B′D′(AAS),
∴AB=A′B′,
在△ABC和△A′B′C′中,
∴△ABC≌△A′B′C′(ASA).【点睛】本题主要考查了三角形全等的判定和性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21、(1);(2),.【分析】(1)根据负整指数幂、零指数幂以及同底数幂的乘法法则计算即可(2)根据分式的混合运算法则先化简,再代入a的值即可【详解】(1)原式(2)原式,∵的范围内的整数有:-2,-1,0,1,2.而,,∴,.(任取其一)当时,原式;.【点睛】本题考查了负整指数幂、零指数幂以及同底数幂的乘法、分式的化简求值等知识,熟练掌握相关的法则是解题的关键22、(1);(2);【分析】(1)根据单项式乘单项式法则、合并同类项法则和单项式除以单项式法则计算即可;(2)根据分式的各个运算法则化简,然后代入求值即可.【详解】解:(1)===(2)=====将代入,得原式=【点睛】此题考查的是整式的混合运算和分式的混合运算,掌握整式的各个运算法则和分式的各个运算法则是解决此题的关键.23、【分析】过点A作AE⊥BC于E,根据三线合一可得CE=BE=,然后根据勾股定理即可求出AE,再根据△ABC面积的两种求法即可求出CD,最后利用勾股定理即可求出AD.【详解】解:过点A作AE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保险承保题目及答案
- 安全职称考试题库及答案
- 康复医疗器械市场创新产品应用前景预测:2025年需求分析报告
- 安全生产禁令试题及答案
- 2025年成人教育终身学习平台运营效率与市场占有率研究报告
- 个人养老金制度2025年对能源行业投资的影响与机遇分析报告
- 智慧交通系统2025年交通流量预测技术应用与智能交通设施报告001
- 胖东来管理培训课件
- 员工岗前消防培训课件
- 员工发展与职业规划课件
- 立讯精密经营管理体系
- 2025年餐饮服务合同范本
- 软式内镜清洗消毒技术规范2025
- 《动物保定技术》课件
- 北京市朝阳区2023-2024学年四年级下学期语文期末考试卷(含答案)
- 上样合作协议合同协议
- 儿科系列常见病中药临床试验设计与评价技术指南急性咽炎和扁桃体炎
- 公司2025庆七一活动方案七一活动方案2025
- 医疗质量管理工具培训
- 留学机构合作协议书范本
- 太极拳教学合同协议
评论
0/150
提交评论