




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,要得到函数的图象,只需将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度2.年初,湖北出现由新型冠状病毒引发的肺炎.为防止病毒蔓延,各级政府相继启动重大突发公共卫生事件一级响应,全国人心抗击疫情.下图表示月日至月日我国新型冠状病毒肺炎单日新增治愈和新增确诊病例数,则下列中表述错误的是()A.月下旬新增确诊人数呈波动下降趋势B.随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数C.月日至月日新增确诊人数波动最大D.我国新型冠状病毒肺炎累计确诊人数在月日左右达到峰值3.执行如图所示的程序框图,输出的结果为()A. B. C. D.4.已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、、元).甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为()A. B. C. D.5.要排出高三某班一天中,语文、数学、英语各节,自习课节的功课表,其中上午节,下午节,若要求节语文课必须相邻且节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是()A. B. C. D.6.点为的三条中线的交点,且,,则的值为()A. B. C. D.7.的展开式中的系数是()A.160 B.240 C.280 D.3208.下列函数中,既是奇函数,又在上是增函数的是().A. B.C. D.9.已知△ABC中,.点P为BC边上的动点,则的最小值为()A.2 B. C. D.10.已知函数,若关于的不等式恰有1个整数解,则实数的最大值为()A.2 B.3 C.5 D.811.已知双曲线:,,为其左、右焦点,直线过右焦点,与双曲线的右支交于,两点,且点在轴上方,若,则直线的斜率为()A. B. C. D.12.已知数列为等差数列,为其前项和,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.平行四边形中,,为边上一点(不与重合),将平行四边形沿折起,使五点均在一个球面上,当四棱锥体积最大时,球的表面积为________.14.对任意正整数,函数,若,则的取值范围是_________;若不等式恒成立,则的最大值为_________.15.某班星期一共八节课(上午、下午各四节,其中下午最后两节为社团活动),排课要求为:语文、数学、外语、物理、化学各排一节,从生物、历史、地理、政治四科中选排一节.若数学必须安排在上午且与外语不相邻(上午第四节和下午第一节不算相邻),则不同的排法有__________种.16.在的展开式中,的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取21根棉花纤维进行统计,结果如下表:(记纤维长度不低于311的为“长纤维”,其余为“短纤维”)纤维长度甲地(根数)34454乙地(根数)112116(1)由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过1.125的前提下认为“纤维长度与土壤环境有关系”.甲地乙地总计长纤维短纤维总计附:(1);(2)临界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)现从上述41根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.18.(12分)在平面直角坐标系中,曲线C的参数方程为(为参数).以原点为极点,x轴的非负半轴为极轴,建立极坐标系.(1)求曲线C的极坐标方程;(2)直线(t为参数)与曲线C交于A,B两点,求最大时,直线l的直角坐标方程.19.(12分)设抛物线的焦点为,准线为,为抛物线过焦点的弦,已知以为直径的圆与相切于点.(1)求的值及圆的方程;(2)设为上任意一点,过点作的切线,切点为,证明:.20.(12分)已知函数(1)若对任意恒成立,求实数的取值范围;(2)求证:21.(12分)如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.(1)求的值:(2)若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.22.(10分)设复数满足(为虚数单位),则的模为______.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据函数图像平移原则,即可容易求得结果.【详解】因为,故要得到,只需将向左平移个单位长度.故选:A.【点睛】本题考查函数图像平移前后解析式的变化,属基础题.2、D【解析】
根据新增确诊曲线的走势可判断A选项的正误;根据新增确诊曲线与新增治愈曲线的位置关系可判断B选项的正误;根据月日至月日新增确诊曲线的走势可判断C选项的正误;根据新增确诊人数的变化可判断D选项的正误.综合可得出结论.【详解】对于A选项,由图象可知,月下旬新增确诊人数呈波动下降趋势,A选项正确;对于B选项,由图象可知,随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数,B选项正确;对于C选项,由图象可知,月日至月日新增确诊人数波动最大,C选项正确;对于D选项,在月日及以前,我国新型冠状病毒肺炎新增确诊人数大于新增治愈人数,我国新型冠状病毒肺炎累计确诊人数不在月日左右达到峰值,D选项错误.故选:D.【点睛】本题考查统计图表的应用,考查数据处理能力,属于基础题.3、D【解析】
由程序框图确定程序功能后可得出结论.【详解】执行该程序可得.故选:D.【点睛】本题考查程序框图.解题可模拟程序运行,观察变量值的变化,然后可得结论,也可以由程序框图确定程序功能,然后求解.4、B【解析】
甲、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得.【详解】由题意甲、乙租车费用为3元的概率分别是,∴甲、乙两人所扣租车费用相同的概率为.故选:B.【点睛】本题考查独立性事件的概率.掌握独立事件的概率乘法公式是解题基础.5、C【解析】
根据题意,分两种情况进行讨论:①语文和数学都安排在上午;②语文和数学一个安排在上午,一个安排在下午.分别求出每一种情况的安排方法数目,由分类加法计数原理可得答案.【详解】根据题意,分两种情况进行讨论:①语文和数学都安排在上午,要求节语文课必须相邻且节数学课也必须相邻,将节语文课和节数学课分别捆绑,然后在剩余节课中选节到上午,由于节英语课不加以区分,此时,排法种数为种;②语文和数学都一个安排在上午,一个安排在下午.语文和数学一个安排在上午,一个安排在下午,但节语文课不加以区分,节数学课不加以区分,节英语课也不加以区分,此时,排法种数为种.综上所述,共有种不同的排法.故选:C.【点睛】本题考查排列、组合的应用,涉及分类计数原理的应用,属于中等题.6、B【解析】
可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出.【详解】如图:点为的三条中线的交点,由可得:,又因,,.故选:B【点睛】本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.7、C【解析】
首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.【详解】由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.故选:C【点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.8、B【解析】
奇函数满足定义域关于原点对称且,在上即可.【详解】A:因为定义域为,所以不可能时奇函数,错误;B:定义域关于原点对称,且满足奇函数,又,所以在上,正确;C:定义域关于原点对称,且满足奇函数,,在上,因为,所以在上不是增函数,错误;D:定义域关于原点对称,且,满足奇函数,在上很明显存在变号零点,所以在上不是增函数,错误;故选:B【点睛】此题考查判断函数奇偶性和单调性,注意奇偶性的前提定义域关于原点对称,属于简单题目.9、D【解析】
以BC的中点为坐标原点,建立直角坐标系,可得,设,运用向量的坐标表示,求得点A的轨迹,进而得到关于a的二次函数,可得最小值.【详解】以BC的中点为坐标原点,建立如图的直角坐标系,可得,设,由,可得,即,则,当时,的最小值为.故选D.【点睛】本题考查向量数量积的坐标表示,考查转化思想和二次函数的值域解法,考查运算能力,属于中档题.10、D【解析】
画出函数的图象,利用一元二次不等式解法可得解集,再利用数形结合即可得出.【详解】解:函数,如图所示当时,,由于关于的不等式恰有1个整数解因此其整数解为3,又∴,,则当时,,则不满足题意;当时,当时,,没有整数解当时,,至少有两个整数解综上,实数的最大值为故选:D【点睛】本题主要考查了根据函数零点的个数求参数范围,属于较难题.11、D【解析】
由|AF2|=3|BF2|,可得.设直线l的方程x=my+,m>0,设,,即y1=﹣3y2①,联立直线l与曲线C,得y1+y2=-②,y1y2=③,求出m的值即可求出直线的斜率.【详解】双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的方程x=my+,m>0,∵双曲线的渐近线方程为x=±2y,∴m≠±2,设A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,联立①②得,联立①③得,,即:,,解得:,直线的斜率为,故选D.【点睛】本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题.12、B【解析】
利用等差数列的性质求出的值,然后利用等差数列求和公式以及等差中项的性质可求出的值.【详解】由等差数列的性质可得,.故选:B.【点睛】本题考查等差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
依题意可得、、、四点共圆,即可得到,从而得到三角形为正三角形,利用余弦定理可得,且,要使四棱锥体积最大,当且仅当面面时体积取得最大值,利用正弦定理求出的外接圆的半径,再又可证面,则外接球的半径,即可求出球的表面积;【详解】解:依题意可得、、、四点共圆,所以因为,所以,,所以三角形为正三角形,则,,利用余弦定理得即,解得,则所以,当面面时,取得最大,所以的外接圆的半径,又面面,,且面面,面所以面,所以外接球的半径所以故答案为:【点睛】本题考查多面体的外接球的相关计算,正弦定理、余弦定理的应用,属于中档题.14、【解析】
将代入求解即可;当为奇数时,,则转化为,设,由单调性求得的最小值;同理,当为偶数时,,则转化为,设,利用导函数求得的最小值,进而比较得到的最大值.【详解】由题,,解得.当为奇数时,,由,得,而函数为单调递增函数,所以,所以;当为偶数时,,由,得,设,,单调递增,,所以,综上可知,若不等式恒成立,则的最大值为.故答案为:(1);(2)【点睛】本题考查利用导函数求最值,考查分类讨论思想和转化思想.15、1344【解析】
分四种情况讨论即可【详解】解:数学排在第一节时有:数学排在第二节时有:数学排在第三节时有:数学排在第四节时有:所以共有1344种故答案为:1344【点睛】考查排列、组合的应用,注意分类讨论,做到不重不漏;基础题.16、【解析】
根据二项展开式定理,求出含的系数和含的系数,相乘即可.【详解】的展开式中,所求项为:,的系数为.
故答案为:.【点睛】本题考查二项展开式定理的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系”.(2)见解析【解析】试题分析:(1)可以根据所给表格填出列联表,利用列联表求出,结合所给数据,应用独立性检验知识可作出判断;(2)写出的所有可能取值,并求出对应的概率,可列出分布列并进一步求出的数学期望.试题解析:(Ⅰ)根据已知数据得到如下列联表:甲地乙地总计长纤维91625短纤维11415总计212141根据列联表中的数据,可得所以,在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系”.(Ⅱ)由表可知在8根中乙地“短纤维”的根数为,的可能取值为:1,1,2,3,,,,.∴的分布列为:1123∴.18、(1);(2).【解析】
(1)利用消去参数,得到曲线的普通方程,再将,代入普通方程,即可求出结论;(2)由(1)得曲线表示圆,直线曲线C交于A,B两点,最大值为圆的直径,直线过圆心,即可求出直线的方程.【详解】(1)由曲线C的参数方程(为参数),可得曲线C的普通方程为,因为,所以曲线C的极坐标方程为,即.(2)因为直线(t为参数)表示的是过点的直线,曲线C的普通方程为,所以当最大时,直线l经过圆心.直线l的斜率为,方程为,所以直线l的直角坐标方程为.【点睛】本题考查参数方程与普通方程互化、直角坐标方程与极坐标方程互化、直线与曲线的位置关系,考查化归和转化思想,属于中档题.19、(1)2,;(2)证明见解析.【解析】
(1)由题意得的方程为,根据为抛物线过焦点的弦,以为直径的圆与相切于点..利用抛物线和圆的对称性,可得,圆心为,半径为2.(2)设,的方程为,代入的方程,得,根据直线与抛物线相切,令,得,代入,解得.将代入的方程,得,得到点N的坐标为,然后求解.【详解】(1)解:由题意得的方程为,所以,解得.又由抛物线和圆的对称性可知,所求圆的圆心为,半径为2.所以圆的方程为.(2)证明:易知直线的斜率存在且不为0,设,的方程为,代入的方程,得.令,得,所以,解得.将代入的方程,得,即点N
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年体育休闲广场运动项目引进与推广研究报告
- 药品药店安全管理制度
- 药品销售异常管理制度
- 药店医保网络管理制度
- 药店消毒制度管理制度
- 莱西中学资产管理制度
- 设备台账资料管理制度
- 设备客户报修管理制度
- 设备更新维护管理制度
- 设备申请购买管理制度
- 中国血脂管理指南理论知识考核试题及答案
- 教考结合·必修上册文言知识梳理- 备考
- 血管活性药物静脉输注护理
- 2024年机关事业单位工人汽车驾驶员高级技师国家题库练习题答案
- 村级积分制管理
- Nikon尼康D3100中文说明书
- 国家开放大学2024春《1494员工劳动关系管理》期末考试真题及答案-开
- DBJ∕T 13-234-2024 不发火建筑地面应用技术标准
- 2024年新疆中考地理真题卷及答案
- 人教版初三物理总复习电学专题复习教学设计
- 项目风险记录及跟踪表
评论
0/150
提交评论