版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若是完全平方式,则m的值等于()A.1或5 B.5 C.7 D.7或2.若,,,,则它们的大小关系是()A. B. C. D.3.如图,已知:,点、、…在射线上,点、、…在射线上,,、…均为等边三角形,若,则的边长为()A.20 B.40 C. D.4.下列条件中,不能判断四边形ABCD是平行四边形的是(
)A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD∥BC5.如图,为的角平分线,,过作于,交的延长线于,则下列结论:①;②;③;④其中正确结论的序号有()A.①②③④ B.②③④ C.①②③ D.①②④6.如图,在中,点为的中点,平分,且于点,延长交于点.若,,则的长为()A.5 B.6 C.7 D.87.已知图中的两个三角形全等,则∠1等于()A.72° B.60° C.50° D.58°8.如图,已知直线AB:y=x+分别交x轴、y轴于点B、A两点,C(3,0),D、E分别为线段AO和线段AC上一动点,BE交y轴于点H,且AD=CE,当BD+BE的值最小时,则H点的坐标为()A.(0,4) B.(0,5) C.(0,) D.(0,)9.将一副常规的三角尺按如图方式放置,则图中∠1的度数为()A.95° B.100° C.105° D.115°10.下列运算正确的是()A.a2+a3=2a5 B.a6÷a2=a3C.a2•a3=a5 D.(2ab2)3=6a3b611.在下列四个图案中,是轴对称图形的是()A. B. C. D.12.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25° B.30° C.35° D.40°二、填空题(每题4分,共24分)13.是分式方程的解,则的值是______.14.二次根式与的和是一个二次根式,则正整数a的最小值为__________,其和为__________.15.已知,函数和的图象相交于点,则根据图象可得关于的方程组的解是_______.16.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为_____.17.如图,将等边沿翻折得,,点为直线上的一个动点,连接,将线段绕点顺时针旋转的角度后得到对应的线段(即),交于点,则下列结论:①;②;③当为线段的中点时,则;④四边形的面积为;⑤连接、,当的长度最小时,则的面积为.则说法正确的有________(只填写序号)18.十二边形的内角和度数为_________.三、解答题(共78分)19.(8分)某工厂需要在规定时间内生产1000个某种零件,该工厂按一定速度加工6天后,发现按此速度加工下去会延期4天完工,于是又抽调了一批工人投入这种零件的生产,使工作效率提高了,结果如期完成生产任务.(1)求该工厂前6天每天生产多少个这种零件;(2)求规定时间是多少天.20.(8分)解方程或不等式组:(1);(2)21.(8分)“构造图形解题”,它的应用十分广泛,特别是有些技巧性很强的题目,如果不能发现题目中所隐含的几何意义,而用通常的代数方法去思考,经常让我们手足无措,难以下手,这时,如果能转换思维,发现题目中隐含的几何条件,通过构造适合的几何图形,将会得到事半功倍的效果,下面介绍两则实例:实例一:1876年,美国总统伽非尔德利用实例一图证明了勾股定理:由S四边形ABCD=S△ABC+S△ADE+S△ABE得,化简得:实例二:欧几里得的《几何原本》记载,关于x的方程的图解法是:画Rt△ABC,使∠ABC=90°,BC=,AC=,再在斜边AB上截取BD=,则AD的长就是该方程的一个正根(如实例二图)请根据以上阅读材料回答下面的问题:(1)如图1,请利用图形中面积的等量关系,写出甲图要证明的数学公式是,乙图要证明的数学公式是(2)如图2,若2和-8是关于x的方程x2+6x=16的两个根,按照实例二的方式构造Rt△ABC,连接CD,求CD的长;(3)若x,y,z都为正数,且x2+y2=z2,请用构造图形的方法求的最大值.22.(10分)如图所示,在中,,,于点,平分,于点,求的度数.23.(10分)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.24.(10分)两个工程队共同参与一项筑路工程,若先由甲、乙队合作天,剩下的工程再由乙队单独做天可以完成,共需施工费810万元;若由甲、乙合作完成此项工程共需天,共需施工费万元.(1)求乙队单独完成这项工程需多少天?(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过万元,则乙队最少施工多少天?25.(12分)观察下列等式:第1个等式:;第2个等式:;第3个等式:;第4个等式:;……请回答下列问题:(1)按以上规律,用含n的式子表示第n个等式:==(n为正整数)(2)求的值.26.如图,矩形中,点是线段上一动点,为的中点,的延长线交BC于.(1)求证:;(2)若,,从点出发,以l的速度向运动(不与重合).设点运动时间为,请用表示的长;并求为何值时,四边形是菱形.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据完全平方公式,首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.【详解】解:∵多项式是完全平方式,∴,∴解得:m=7或-1故选:D.【点睛】此题主要查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.2、A【分析】先按法则把a,c,b,d计算结果,比较这些数的大小,再按从小到大的顺序,把a,c,b,d排序即可.【详解】=-0.04,,,=1,-4<-0.04<1<4,b<a<d<c.故选择:A.【点睛】本题考查乘方的运算,掌握乘方的性质,能根据运算的结果比较大小,并按要求排序是解决问题的关键.3、C【分析】根据等边三角形的性质和,可求得,进而证得是等腰三角形,可求得的长,同理可得是等腰三角形,可得,同理得规律,即可求得结果.【详解】解:∵,是等边三角形,∴,∴,∴,则是等腰三角形,∴,∵,∴=1,,同理可得是等腰三角形,可得=2,同理得、,根据以上规律可得:,故选:C.【点睛】本题属于探索规律题,主要考查了等边三角形的性质、等腰三角形的判定与性质,掌握等边三角形的三个内角都是60°、等角对等边和探索规律并归纳公式是解题的关键.4、C【解析】本题考查了平行四边形的判定平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.A、可以得到两组对边分别平行,根据:两组对边分别平行的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;B、可以根据:一组对边平行且相等的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据:两组对边分别平行的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意.故选C.5、A【分析】根据角平分线上的点到角的两边距离相等可得,再利用“”证明和全等,根据全等三角形对应边相等可得,利用“”证明和全等,根据全等三角形对应边相等可得,然后求出;根据全等三角形对应角相等可得,利用“8字型”证明;,再根据全等三角形对应角相等可得,然后求出.【详解】解:平分,,,,在和中,,,故①正确;,在和中,,,,,故②正确;,,设交于O,,,故③正确;,,,,,,故④正确;综上所述,正确的结论有①②③④共4个.故选:.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并准确识图判断出全等的三角形是解题的关键,难点在于需要二次证明三角形全等.6、B【分析】根据平分,且可得△ADB≌△ADN,得到BD=DN,AN=AB=4,根据三角形中位线定理求出NC,计算即可.【详解】解:∵平分,且∴,在△ADB和△ADN中,∴△ADB≌△ADN(ASA)
∴BD=DN,AN=AB=4,
∵点为的中点,
∴NC=2DM=2,
∴AC=AN+NC=6,
故选B.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,三角形的中位线平行于第三边,且等于第三边的一半.7、D【分析】相等的边所对的角是对应角,根据全等三角形对应角相等可得答案.【详解】左边三角形中b所对的角=180°-50°-72°=58°,∵相等的边所对的角是对应角,全等三角形对应角相等∴∠1=58°故选D.【点睛】本题考查全等三角形的性质,找准对应角是解题的关键.8、A【分析】作EF⊥BC于F,设AD=EC=x.利用勾股定理可得BD+BE=+=+,要求BD+BE的最小值,相当于在x轴上找一点M(x,0),使得点M到G(,3),K(,)的距离之和最小.【详解】解:由题意A(0,),B(-3,0),C(3,0),∴AB=AC=8,作EF⊥BC于F,设AD=EC=x.∵EF∥AO,∴,∴EF=,CF=,∵OH∥EF,∴,∴OH=,∴BD+BE=+=+,要求BD+BE的最小值,相当于在x轴上找一点M(x,0),使得点M到K(,3),G(,)的距离之和最小.设G关于x轴的对称点G′(,),直线G′K的解析式为y=kx+b,则有,解得k=,b=,∴直线G′K的解析式为y=x,当y=0时,x=,∴当x=时,MG+MK的值最小,此时OH===4,∴当BD+BE的值最小时,则H点的坐标为(0,4),故选A.【点睛】本题考查一次函数图象上的点的特征、轴对称最短问题、勾股定理、平行线分线段成比例定理等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.9、C【分析】根据题意求出∠BCO,再根据三角形的外角的性质计算即可.【详解】如图,由题意得:∠BCO=∠ACB﹣∠ACD=60°-45°=15°,∴∠1=∠B+∠BCO=90°+15°=105°.故选C.【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解答本题的关键.10、C【分析】原式各项计算得到结果,即可作出判断.【详解】A.原式不能合并,错误;B.原式=a4,错误;C.原式=a5,正确;D.原式=8a3b6,错误,故选C.11、C【解析】轴对称图形的概念:一个图形沿一条直线折叠,直线两旁的图形能够完全重合的图形叫做轴对称图形.根据轴对称图形的概念不难判断只有C选项图形是轴对称图形.故选C.点睛:掌握轴对称图形的概念.12、D【解析】∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°.∵△CDB′由△CDB反折而成,∴∠CB′D=∠B=65°.∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D﹣∠A=65°﹣25°=40°.故选D.二、填空题(每题4分,共24分)13、3【分析】直接把代入分式方程,即可求出的值.【详解】解:把代入,则,整理得:,解得:;故答案为:3.【点睛】本题考查了分式方程的解.首先根据题意写出a的新方程,然后解出a的值.14、1–【解析】试题解析:∵二次根式−3与的和是一个二次根式,∴两根式为同类二次根式,则分两种情况:①是最简二次根式,那么3x=2ax,解得a=,不合题意,舍去;②不是最简二次根式,∵是最简二次根式,且a取最小正整数,∴可写成含的形式,∴a=1.∴当a=1时,=2,则−3+=-3+2=-.故答案为1;–15、【分析】先把P(m,-1)代入y=2x中解出m的值,再根据点P的坐标是方程组的解作答即可.【详解】解:将点P(m,-1)代入,得2m=-1,解得m=,∴的解即为的解,即为.故答案为:.【点睛】本题考查了一次函数与二元一次方程组,从函数的角度看,就是寻求两个一次函数的交点,属于基础题.16、x>﹣2【分析】根据两函数的交点坐标,结合图象即可确定出所求不等式的解集.【详解】解:由题意及图象得:不等式3x+b>ax﹣3的解集为x>﹣2,故答案为:x>﹣2【点睛】本题考查了一次函数与一元一次不等式,利用了数形结合的思想,灵活运用数形结合思想是解本题的关键.17、①②【分析】由等边三角形的性质和折叠的性质,得到四边形ABCD是菱形,则可以判断①、②;当点E时AD中点时,可得△CPF是直角三角形,CE=CF=3,得到,可以判断③;求出对角线的长度,然后求出菱形的面积,可以判断④;当点E与点A重合时,DF的长度最小,此时四边形ACFD是菱形,求出对角线EF和CD的长度,求出面积,可以判断⑤;即可得到答案.【详解】解:根据题意,将等边沿翻折得,如图:∴,∠BCD=120°,∴四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO;故①、②正确;∴,∴,∴,∴菱形ABCD的面积=,故④错误;当点E时AD中点时,CE⊥AD,∴DE=,∠DCE=30°,∴,∵,∠PCF=120°,∠F=30°,∴,故③错误;当点E与点A重合时,DF的长度最小,如图:∵AD∥CF,AD=AC=CF,∴四边形ACFD是菱形,∴CD⊥EF,CD=,,∴;故⑤错误;∴说法正确的有:①②;故答案为:①②.【点睛】本题是四边形综合题目,考查了旋转的性质,菱形的性质、等边三角形的性质,勾股定理、菱形的面积,三角形面积公式等知识;本题综合性强,熟练掌握菱形的性质和等边三角形的性质是解决问题的关键.18、1800°【分析】根据n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【详解】解:十二边形的内角和为:(n﹣2)•180°=(12﹣2)×180°=1800°.故答案为1800°.【点睛】本题考查了多边形的内角和的知识,解决本题的关键是正确运用多边形的内角和公式,要求同学们熟练掌握.三、解答题(共78分)19、(1)该工厂前6天每天生产50个零件;(2)规定的时间为16天.【分析】(1)根据计划的天数可以列出相应的分式方程,从而可以解答本题;
(2)根据(1)中的结果可以求得规定的天数,本题得以解决.【详解】解:(1)设该工厂前6天每天生产x个零件,由题意,列方程方程两边乘,得即解之,得检验:当时,所以原方程的解为故该工厂前6天每天生产50个零件.(2)规定的时间为:故规定的时间为16天.【点睛】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要检验.20、(1);(2)【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
(2)分别求出不等式组中两不等式的解集,找出两解集的方法部分即可.【详解】解:(1)去分母得:2-2x+6=x-2,
解得:x=,
经检验x=是分式方程的解.(2),由①得:x≥1,
由②得:x>1,
∴不等式组的解集为x>1.【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.21、(1)完全平方公式;平方差公式;(2);(3)【分析】(1)利用面积法解决问题即可;(2)如图2,作于点H,由题意可得出,利用面积求出的长,再利用勾股定理求解即可;(3)如图3,用4个全等的直角三角形(两直角边分别为x,y,斜边为z),拼如图正方形,当时定值,z最小时,的值最大值.易知,当小正方形的顶点是大正方形的中点时,z的值最小,此时,,据此求解即可.【详解】解:(1)图1中甲图大正方形的面积乙图中大正方形的面积即∴甲图要证明的数学公式是完全平方公式,乙图要证明的公式是平方差公式;故答案为:完全平方公式;平方差公式;(2)如图2,作于点H,根据题意可知,根据三角形的面积可得:解得:根据勾股定理可得:根据勾股定理可得:;(3)如图3,用4个全等的直角三角形(两直角边分别为x,y,斜边为z),拼如图正方形当时定值,z最小时,的值最大值易知,当小正方形的顶点是大正方形的中点时,z的值最小,此时,,∴的最大值为.【点睛】本题属于三角形综合题,考查了正方形的性质、解直角三角形、完全平方公式、平方差公式、勾股定理等知识点,解此题的关键是理解题意,会用面积法解决问题,学会数形结合的思想解决问题.22、【分析】先根据三角形内角和定理计算,再利用角平分线定义计算,然后根据直角三角形两锐角互余计算,进而计算出,最后根据直角三角形两锐角互余计算.【详解】∵在中,,∴∵平分∴∵于点∴∴在中,∴∵于点∴【点睛】本题考查三角形的内角和定理及角平分线的定义,熟练掌握三角形的内角和为及直角三角形两锐角互余,将未知角转化为已知角并向要求解的角靠拢是解题关键.23、(1)∠1+∠2=90°;理由见解析;(2)(2)BE∥DF;理由见解析.【解析】试题分析:(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.试题解析:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.考点:平行线的判定与性质.24、(1)90天;(2)甲队每天施工费为15万元,乙队每天施工费为8万元;(3)乙队最少施工30天【分析】(1)乙队单独完成这项工程需x天,设根据“先由甲、乙队合作天,剩下的工程再由乙队单独做天可以完成”列出方程,解之即可;(2)设甲队每天施工费为m万元,乙队每天施工费为n万元,根据两种情况下的总施工费分别为810万元和828万元列出方程组,解之即可;(3)求出甲队单独施工需要的天数,设乙队施工a天,甲队施工b天,则有,再根据工程预算的总费用不超过万元列出不等式,代入求解即可得到a的最小值,即最少施工的天数.【详解】解:(1)设乙队单独完成这项工程需x天,由题意可得:,解得:x=90,经检验:x=90是原方程的解,∴乙队单独完成这项工程需90天;(2)设甲队
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《蔡和森民生思想研究》
- 《ANQ公司股权激励案例研究》
- 2024年南京客运上岗考试都考什么题
- 2024年河北小型客运从业资格证理论考题
- 2024年合肥客运考试答案
- 2024年台州赤峰客运从业资格证模拟考试
- 2023届新高考化学选考一轮总复习训练-第22讲 化学反应速率
- 2024年客运资格证实操题库
- 可恢复功能防震结构研究综述
- 五年制高职信息技术“课证融通”课程体系构建探析
- 抗癌必修课胰腺癌
- 充电桩采购安装投标方案(技术方案)
- 《带状疱疹》课件
- 法律资料特种设备法律法规与事故案例培训
- 成立分公司计划书
- 浙江省绍兴市诸暨市2023-2024学年七年级数学上学期期末试卷
- 营销的12个方法论
- 化肥农药减量增效问卷调查表
- 浙江省宁波市四校联考2023-2024学年九年级上学期12月月考数学试题
- 社会服务项目结果评估报告
- GB/T 18603-2023天然气计量系统技术要求
评论
0/150
提交评论