版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C. D.22.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是().A. B. C. D.3.在中,,,分别为角,,的对边,若的面为,且,则()A.1 B. C. D.4.《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为()A. B. C. D.5.过双曲线的右焦点F作双曲线C的一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为()A. B. C.2 D.6.如图,圆是边长为的等边三角形的内切圆,其与边相切于点,点为圆上任意一点,,则的最大值为()A. B. C.2 D.7.设,则,则()A. B. C. D.8.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有()A.36种 B.44种 C.48种 D.54种9.已知,,是平面内三个单位向量,若,则的最小值()A. B. C. D.510.若,则实数的大小关系为()A. B. C. D.11.若函数有且仅有一个零点,则实数的值为()A. B. C. D.12.执行如图所示的程序框图,若输出的,则①处应填写()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点和椭圆的右焦点重合,直线过抛物线的焦点与抛物线交于、两点和椭圆交于、两点,为抛物线准线上一动点,满足,,当面积最大时,直线的方程为______.14.正方体的棱长为2,是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦),为正方体表面上的动点,当弦的长度最大时,的取值范围是______.15.已知,,分别为内角,,的对边,,,,则的面积为__________.16.甲,乙两队参加关于“一带一路”知识竞赛,甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,若两队各出一名队员进行比赛,则出场的两名运动员编号相同的概率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知集合,.(1)若,则;(2)若,求实数的取值范围.18.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)求曲线C的极坐标方程和直线l的直角坐标方程;(2)若射线与曲线C交于点A(不同于极点O),与直线l交于点B,求的最大值.19.(12分)如图,在四棱锥中,底面是直角梯形且∥,侧面为等边三角形,且平面平面.(1)求平面与平面所成的锐二面角的大小;(2)若,且直线与平面所成角为,求的值.20.(12分)已知函数f(x)=ex-x2-kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.(1)求实数k的取值范围;(2)证明:f(x)的极大值不小于1.21.(12分)已知数列的各项均为正数,且满足.(1)求,及的通项公式;(2)求数列的前项和.22.(10分)已知函数.(1)求函数的最小正周期以及单调递增区间;(2)已知,若,,,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.2、A【解析】
基本事件总数,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率.【详解】解:从四个阴数和五个阳数中分别随机选取1个数,基本事件总数,其和等于11包含的基本事件有:,,,,共4个,其和等于的概率.故选:.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.3、D【解析】
根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.【详解】解:由,得,∵,∴,即即,则,∵,∴,∴,即,则,故选D.【点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.4、C【解析】
由题意知:,,设,则,在中,列勾股方程可解得,然后由得出答案.【详解】解:由题意知:,,设,则在中,列勾股方程得:,解得所以从该葭上随机取一点,则该点取自水下的概率为故选C.【点睛】本题考查了几何概型中的长度型,属于基础题.5、C【解析】
由得F是弦AB的中点.进而得AB垂直于x轴,得,再结合关系求解即可【详解】因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线C的左顶点,所以,即,则,故.故选:C【点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题.6、C【解析】
建立坐标系,写出相应的点坐标,得到的表达式,进而得到最大值.【详解】以D点为原点,BC所在直线为x轴,AD所在直线为y轴,建立坐标系,设内切圆的半径为1,以(0,1)为圆心,1为半径的圆;根据三角形面积公式得到,可得到内切圆的半径为可得到点的坐标为:故得到故得到,故最大值为:2.故答案为C.【点睛】这个题目考查了向量标化的应用,以及参数方程的应用,以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.7、A【解析】
根据换底公式可得,再化简,比较的大小,即得答案.【详解】,,.,显然.,即,,即.综上,.故选:.【点睛】本题考查换底公式和对数的运算,属于中档题.8、B【解析】
分三种情况,任务A排在第一位时,E排在第二位;任务A排在第二位时,E排在第三位;任务A排在第三位时,E排在第四位,结合任务B和C不能相邻,分别求出三种情况的排列方法,即可得到答案.【详解】六项不同的任务分别为A、B、C、D、E、F,如果任务A排在第一位时,E排在第二位,剩下四个位置,先排好D、F,再在D、F之间的3个空位中插入B、C,此时共有排列方法:;如果任务A排在第二位时,E排在第三位,则B,C可能分别在A、E的两侧,排列方法有,可能都在A、E的右侧,排列方法有;如果任务A排在第三位时,E排在第四位,则B,C分别在A、E的两侧;所以不同的执行方案共有种.【点睛】本题考查了排列组合问题,考查了学生的逻辑推理能力,属于中档题.9、A【解析】
由于,且为单位向量,所以可令,,再设出单位向量的坐标,再将坐标代入中,利用两点间的距离的几何意义可求出结果.【详解】解:设,,,则,从而,等号可取到.故选:A【点睛】此题考查的是平面向量的坐标、模的运算,利用整体代换,再结合距离公式求解,属于难题.10、A【解析】
将化成以为底的对数,即可判断的大小关系;由对数函数、指数函数的性质,可判断出与1的大小关系,从而可判断三者的大小关系.【详解】依题意,由对数函数的性质可得.又因为,故.故选:A.【点睛】本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断大小;若真数和底数都不相同,则可与中间值如1,0比较大小.11、D【解析】
推导出函数的图象关于直线对称,由题意得出,进而可求得实数的值,并对的值进行检验,即可得出结果.【详解】,则,,,所以,函数的图象关于直线对称.若函数的零点不为,则该函数的零点必成对出现,不合题意.所以,,即,解得或.①当时,令,得,作出函数与函数的图象如下图所示:此时,函数与函数的图象有三个交点,不合乎题意;②当时,,,当且仅当时,等号成立,则函数有且只有一个零点.综上所述,.故选:D.【点睛】本题考查利用函数的零点个数求参数,考查函数图象对称性的应用,解答的关键就是推导出,在求出参数后要对参数的值进行检验,考查分析问题和解决问题的能力,属于中等题.12、B【解析】
模拟程序框图运行分析即得解.【详解】;;.所以①处应填写“”故选:B【点睛】本题主要考查程序框图,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据均值不等式得到,,根据等号成立条件得到直线的倾斜角为,计算得到直线方程.【详解】由椭圆,可知,,,,,,,(当且仅当,等号成立),,,,,直线的倾斜角为,直线的方程为.故答案为:.【点睛】本题考查了抛物线,椭圆,直线的综合应用,意在考查学生的计算能力和综合应用能力.14、【解析】
由弦的长度最大可知为球的直径.由向量的线性运用表示出,即可由范围求得的取值范围.【详解】连接,如下图所示:设球心为,则当弦的长度最大时,为球的直径,由向量线性运算可知正方体的棱长为2,则球的半径为1,,所以,而所以,即故答案为:.【点睛】本题考查了空间向量线性运算与数量积的运算,正方体内切球性质应用,属于中档题.15、【解析】
根据题意,利用余弦定理求得,再运用三角形的面积公式即可求得结果.【详解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面积.故答案为:.【点睛】本题考查余弦定理的应用和三角形的面积公式,考查计算能力.16、【解析】
出场运动员编号相同的事件显然有3种,计算出总的基本事件数,由古典概型概率计算公式求得答案.【详解】甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,出场的两名运动员编号相同的事件数为3,出现的基本事件总数,则出场的两名运动员编号相同的概率为.故答案为:【点睛】本题考查求古典概率的概率问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)将代入可得集合B,解对数不等式可得集合A,由并集运算即可得解.(2)由可知B为A的子集,即;当符合题意,当B不为空集时,由不等式关系即可求得的取值范围.【详解】(1)若,则,依题意,故;(2)因为,故;若,即时,,符合题意;若,即时,,解得;综上所述,实数的取值范围为.【点睛】本题考查了集合的并集运算,由集合的包含关系求参数的取值范围,注意讨论集合是否为空集的情况,属于基础题.18、(1):,直线:;(2).【解析】
(1)由消参法把参数方程化为普通方程,再由公式进行直角坐标方程与极坐标方程的互化;(2)由极径的定义可直接把代入曲线和直线的极坐标方程,求出极径,把比值化为的三角函数,从而可得最大值、【详解】(1)消去参数可得曲线的普通方程是,即,代入得,即,∴曲线的极坐标方程是;由,化为直角坐标方程为.(2)设,则,,,当时,取得最大值为.【点睛】本题考查参数方程与普通方程的互化,考查极坐标方程与直角坐标方程的互化,掌握公式可轻松自如进行极坐标方程与直角坐标方程的互化.19、(1);(2).【解析】
(1)分别取的中点为,易得两两垂直,以所在直线为轴建立空间直角坐标系,易得为平面的法向量,只需求出平面的法向量为,再利用计算即可;(2)求出,利用计算即可.【详解】(1)分别取的中点为,连结.因为∥,所以∥.因为,所以.因为侧面为等边三角形,所以又因为平面平面,平面平面,平面,所以平面,所以两两垂直.以为空间坐标系的原点,分别以所在直线为轴建立如图所示的空间直角坐标系,因为,则,,.设平面的法向量为,则,即.取,则,所以.又为平面的法向量,设平面与平面所成的锐二面角的大小为,则,所以平面与平面所成的锐二面角的大小为.(2)由(1)得,平面的法向量为,所以成.又直线与平面所成角为,所以,即,即,化简得,所以,符合题意.【点睛】本题考查利用向量坐标法求面面角、线面角,涉及到面面垂直的性质定理的应用,做好此类题的关键是准确写出点的坐标,是一道中档题.20、(1);(2)见解析【解析】
(1)求出,记,问题转化为方程有两个不同解,求导,研究极值即可得结果;(2)由(1)知,在区间上存在极大值点,且,则可求出极大值,记,求导,求单调性,求出极值即可.【详解】(1),由,记,,由,且时,,单调递减,,时,,单调递增,,由题意,方程有两个不同解,所以;(2)解法一:由(1)知,在区间上存在极大值点,且,所以的极大值为,记,则,因为,所以,所以时,,单调递减,时,,单调递增,所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度社区家庭桶装水直供合同3篇
- 2024年度数字经济投资入股合同范本大全3篇
- 2024年度宿松路南延工程地质勘查与钻探服务合同3篇
- 2024年新型城镇化交通枢纽投资施工协议3篇
- 2024年版:人力资源部门劳动合同范本
- 2024版土地使用权出让与购买合同3篇
- 2024年度智能照明设备研发试用买卖合同书3篇
- 2024年标准版土地承包经营权租赁合同样本版
- 唯一网骨科产品培训
- 2024年旧城改造地基施工协议3篇
- 儿童健康管理服务总结分析报告
- 殡葬行业的风险分析
- 下肢静脉血栓个案查房
- 通信工程冬季施工安全培训
- 痛风病科普讲座课件
- 工作岗位风险评估报告
- 护理查房肺部感染心衰
- 拒执罪申请书范本
- 《阿米巴经营》读书分享
- 铅酸锂电池回收项目计划书
- 北京市朝阳区2023-2024学年七年级上学期期末检测语文试卷+
评论
0/150
提交评论