![组合数的性质与综合应用_第1页](http://file4.renrendoc.com/view3/M03/31/2E/wKhkFmakSZ2AfO-fAAIFvW_oVTw288.jpg)
![组合数的性质与综合应用_第2页](http://file4.renrendoc.com/view3/M03/31/2E/wKhkFmakSZ2AfO-fAAIFvW_oVTw2882.jpg)
![组合数的性质与综合应用_第3页](http://file4.renrendoc.com/view3/M03/31/2E/wKhkFmakSZ2AfO-fAAIFvW_oVTw2883.jpg)
![组合数的性质与综合应用_第4页](http://file4.renrendoc.com/view3/M03/31/2E/wKhkFmakSZ2AfO-fAAIFvW_oVTw2884.jpg)
![组合数的性质与综合应用_第5页](http://file4.renrendoc.com/view3/M03/31/2E/wKhkFmakSZ2AfO-fAAIFvW_oVTw2885.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1组合(三)复习巩固:1、组合定义:
一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号表示.2、组合数:3、组合数公式:引例一个口袋内装有大小相同的7个白球和1个黑球①从口袋里取出3个球,共有多少种取法?②从口袋里取出3个球,使其中含有一个黑球,有多少种取法?③从口袋里取出3个球,使其中不含黑球,有多少种取法?从引例中可以发现一个结论:对上面的发现(等式)作怎样解释?
我们可以这样解释:从口袋内的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球.因此根据分类计数原理,上述等式成立.组合数性质2性质2组合数性质2:说明:1、公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与原组合数上标较大的相同的一个组合数2、此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.例在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件(1)有多少种不同的抽法?100个不同元素中取3个元素的组合数(2)抽出的3件中恰好有1件是次品的抽法有多少种?从2件次品中抽出1件次品的抽法有从98件合格品中抽出2件的抽法有例在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件(3)抽出的3件中至少有1件是次品的抽法有多少种?法1含1件次品或含2件次品例在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件法2100件中抽3件减98件合格品中抽3件例计算例.计算:解:原式=D190巩固练习3.有3张参观券,要在5人中确定3人去参观,不同方法的种数是104.6人同时被邀请参加一项活动,必须有人去,去几人自行决定,共有多少种不同的去法?解:有6类办法,第1类去1人,第2类去2人,第3类去3人,第4类去4人,第5类去5人,第6类去6人,所以共有不同的去法巩固练习2、求的值例、(1)求证:Cn+1=Cn+Cn-1+Cn-1mm-1mm-14、求C2+C3+C4+C5+C6+…+C100的值
222222(2)求C2+C3+C4+C5+C6+C7的值
222222练习:1、
C100-C9990
893、已知,求x的值C12=
C11
+
C1177
x=()A、C10011B、C999D、C10012C、C9910小结2.组合数性质:1.组合数公式:例证明补充例题:例1计算:例2求证:有6本不同的书.(1)甲、乙、丙3人每人2本,有多少种不同的分法?(2)分成3堆,每堆2本,有多少种不同的分堆方法?(3)分成3堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法?(4)分给甲、乙、丙3人,一人1本,一人2本,一人3本,有多少种不同的分配方法?(5)分成3堆,有2堆各1本,另一堆4本,有多少种不同的分堆方法?(6)摆在3层书架上,每层2本,有多少种不同的摆法?一、分组与分配问题跟踪练习2.有4个不同的球,4个不同的盒子,把球全部放入盒子内.(1)共有几种放法?(2)恰有1个空盒,有几种放法?例4、某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有()(A)种(B)种(C)种(D)种二、不相邻问题插空法本题使用插空法,先将亮的9盏灯排成一排,
由题意,两端的灯不能熄灭,则有8个符合条件的空位,
进而在8个空位中,任取3个插入熄灭的3盏灯,
有C83种方法,
故选A.1、某学习小组有5个男生3个女生,从中选3名男生和1名女生参加三项竞赛活动,每项活动至少有1人参加,则有不同参赛方法______种.解:采用先组后排方法:2、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种?解法一:先组队后分校(先分堆后分配)解法二:依次确定到第一、第二、第三所学校去的医生和护士.三、混合问题,先“组”后“排四、分类组合,隔板处理例6、从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?分析:问题相当于把个30相同球放入6个不同盒子(盒子不能空的)有几种放法?这类问可用“隔板法”处理.解:采用“隔板法”得:练习:
1、将8个学生干部的培训指标分配给5个不同的班级,每班至少分到1个名额,共有多少种不同的分配方法?2、从一楼到二楼的楼梯有17级,上楼时可以一步走一级,也可以一步走两级,若要求11步走完,则有多少种不同的走法?17-11=6
有6个2步的,
17次中挑6次走2步C(6,17)=12376种
3、在如图7x4的方格纸上(每小方格均为正方形)(1)其中有多少个矩形?(2)其中有多少个正方形?课堂练习:(1)矩形的话用C(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 入少年先锋队申请书
- 购买工具申请书
- 市政工程项目风险识别与评估综合报告
- 初级公司信贷-初级银行从业资格考试《公司信贷》押题密卷9
- 校牌补办申请书
- 初中贫困申请书50字
- 加快文件读写操作的策略
- 造价工程师《工程计价》真题和答案文字完整版
- DB2203-T 10-2024 政务服务一次性告知服务规范
- 2023-2024学年陕西省西安市高一上学期期末考试物理试卷(解析版)
- 蒋中一动态最优化基础
- 华中农业大学全日制专业学位研究生实践单位意见反馈表
- 写作必备制造悬念的145个方法
- 付款申请英文模板
- 七年级英语阅读理解10篇(附答案解析)
- 抖音来客本地生活服务酒旅商家代运营策划方案
- 钻芯法桩基检测报告
- 无线网网络安全应急预案
- 国籍状况声明书【模板】
- 常用保洁绿化人员劳动合同范本5篇
- 新高考高一英语时文阅读
评论
0/150
提交评论