版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲 B.乙 C.丙 D.丁2.如图,为线段上任意一点(不与、重合),在同侧分别是等边三角形和等边三角形,与交于点,与交于点,与交于点,连接.以下五个结论:①;②;③;④;⑤.正确的结论有()A.5个 B.4个 C.3个 D.2个3.当x时,分式的值为0()A.x≠- B.x=- C.x≠2 D.x=24.在平面直角坐标系中,点(5,6)关于x轴的对称点是()A.(6,5) B.(-5,6) C.(5,-6) D.(-5,-6)5.若x=-1.则下列分式值为0的是()A. B. C. D.6.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN(
)A.∠M=∠N B.AB=CD C.AM∥CN D.AM=CN7.点M(1,2)关于x轴对称的点的坐标为()A.(1,-2) B.(-1,2) C.(-1,-2) D.(2,-1)8.下列命题中,属于假命题的是()A.直角三角形的两个锐角互余 B.有一个角是的三角形是等边三角形C.两点之间线段最短 D.对顶角相等9.将一次函数(为常数)的图像位于轴下方的部分沿轴翻折到轴上方,和一次函数(为常数)的图像位于轴及上方的部分组成“”型折线,过点作轴的平行线,若该“”型折线在直线下方的点的横坐标满足,则的取值范围是()A. B. C. D.10.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长:]二、填空题(每小题3分,共24分)11.观察:①3、4、5,②5、12、13,③7、24、25,……,发现这些勾股数的“勾”都是奇数,且从3起就没断过.根据以上规律,请写出第8组勾股数:______.12.分式的最简公分母是_____________.13.的绝对值是_____.14.比较大小:4______(用“>”、“<”或“=”填空).15.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=50°,则∠BDA=________.16.如图,在正方形网格中有两个小正方形被涂黑,再涂黑一个图中其余的小正方形,使得整个被涂黑的图案构成一个轴对称图形,那么涂法共有_____种.17.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为________.18.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB=.三、解答题(共66分)19.(10分)甲、乙两车从城出发匀速行驶至城,在整个行驶过程中,甲、乙离开城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示,根据图象信息解答下列问题:(1)乙车比甲车晚出发多少时间?(2)乙车出发后多少时间追上甲车?(3)求在乙车行驶过程中,当为何值时,两车相距20千米?20.(6分)已知在平面直角坐标系中的位置如图所示.(1)画出关于轴对称的;(2)每个小方格都是边长为1个单位的正方形,求多边形的面积.21.(6分)如图,△ABC是等腰三角形,AB=AC,分别以两腰为边向△ABC外作等边三角形ADB和等边三角形ACE.若∠DAE=∠DBC,求∠BAC的度数.22.(8分)小明和爷爷元旦登山,小明走较陡峭的山路,爷爷走较平缓的步道,相约在山顶会合.已知步道的路程比山路多700米,小明比爷爷晚出发半个小时,小明的平均速度为每分钟50米.图中的折线反映了爷爷行走的路程y(米)与时间x(分钟)之间的函数关系.(1)爷爷行走的总路程是_____米,他在途中休息了_____分钟,爷爷休息后行走的速度是每分钟_____米;(2)当0≤x≤25时,y与x的函数关系式是___;(3)两人谁先到达终点?这时另一个人离山顶还有多少米?23.(8分)如图,在△ABC的一边AB上有一点P.(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短.若能,请画出点M、N的位置,若不能,请说明理由;(2)若∠ACB=40°,在(1)的条件下,求出∠MPN的度数.24.(8分)如图所示,在直角坐标系中,△ABC的三个顶点的坐标分别为A(1,5),B(1,−2),C(4,0).(1)请在图中画出△ABC关于y轴对称的△A′B′C′,并写出三个顶点A′、B′、C′的坐标.(2)求△ABC的面积.25.(10分)某零件周边尺寸(单位,cm)如图所示,且.求该零件的面积.26.(10分)已知,其中是一个含的代数式.(1)求化简后的结果;(2)当满足不等式组,且为整数时,求的值.
参考答案一、选择题(每小题3分,共30分)1、D【详解】∵射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S2甲>S2乙>S2丙>S2丁,∴射箭成绩最稳定的是丁;故选D.2、B【解析】由已知条件可知根据可证得,进而可以推导出、、、等结论.【详解】∵和是等边三角形∴,,∴∴即∴在和中,∴∴,,∵,∴在中∴∴,∴是等边三角形∴∴∵∴∵在中,,∴∵∴∴正确的结论是:,、、故选:B【点睛】本题考查了三角形、等边三角形、全等三角形的相关内容,其结论都是在的基础上形成的结论,说明证三角形全等是解题的关键,既可以充分揭示数学问题的层次,又可以考查学生的思维层次.3、D【分析】分式的值为的条件是:(1)分子等于零;(2)分母不等于零.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:∵分式的值为∴∴.故选:D【点睛】本题考查的是对分式的值为0的条件的理解,该类型的题易忽略分母不为这个条件.4、C【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数即可得答案.【详解】点(5,6)关于x轴的对称点(5,-6),故选:C.【点睛】本题主要考查了关于x轴对称点的坐标特点,熟练掌握关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数是解题关键.5、C【分析】将代入各项求值即可.【详解】A.将代入原式,,错误;B.将代入原式,无意义,错误;C.将代入原式,,正确;D.将代入原式,,错误;故答案为:C.【点睛】本题考查了分式的运算,掌握分式的性质以及运算法则是解题的关键.6、D【分析】A、在△ABM和△CDN中由ASA条件可证△ABM≌△CDN,则A正确,B、在△ABM和△CDN中由SAS可证△ABM≌△CDN则B正确,C、AM∥CN,得∠A=∠C,在△ABM和△CDN中AAS△ABM≌△CDN,则C正确,D、只有在直角三角形中边边角才成立,则D不正确.【详解】A、在△ABM和△CDN中,∠M=∠N,MB=ND,∠MBA=∠NDC,△ABM≌△CDN(ASA),则A正确;B、在△ABM和△CDN中,MB=ND,∠MBA=∠NDC,AB=CD,△ABM≌△CDN(SAS),则B正确;C、AM∥CN,得∠A=∠C,在△ABM和△CDN中,∠A=∠C,∠MBA=∠NDC,MB=ND,△ABM≌△CDN(AAS),则C正确;D、AM=CN,MB=ND,∠MBA=∠NDC≠90º,则D不正确.故选择:D.【点睛】本题考查在一边与一角的条件下,添加条件问题,关键是掌握三角形全等的判定方法,结合已知与添加的条件是否符合判定定理.7、A【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而求出即可.【详解】点M(1,2)关于x轴对称的点的坐标为:(1,-2).
故选:A.【点睛】此题考查关于x轴对称的性质,正确把握横纵坐标的关系是解题关键.8、B【分析】根据直角三角形的性质、等边三角形的判定、两点之间线段最短、对顶角相等即可逐一判断.【详解】解:A.直角三角形的两个锐角互余,正确;B.有一个角是的三角形不一定是等边三角形;故B错误;C.两点之间线段最短,正确;D.对顶角相等,正确,故答案为:B.【点睛】本题考查了命题的判断,涉及直角三角形的性质、等边三角形的判定、两点之间线段最短、对顶角相等,解题的关键是掌握上述知识点.9、A【分析】先解不等式3x+b<1时,得x<;再求出函数y=3x+b沿x轴翻折后的解析式为y=-3x-b,解不等式-3x-b<1,得x>-;根据x满足0<x<3,得出-=0,=3,进而求出b的取值范围.【详解】∵y=3x+b,∴当y<1时,3x+b<1,解得x<;∵函数y=3x+b沿x轴翻折后的解析式为-y=3x+b,即y=-3x-b,∴当y<1时,-3x-b<1,解得x>-;∴-<x<,∵x满足0<x<3,∴-=0,=3,∴b=-1,b=-8,∴b的取值范围为-8≤b≤-1.故选:A.【点睛】本题考查了一次函数图象与几何变换,求出函数y=2x+b沿x轴翻折后的解析式是解题的关键.10、D【解析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选D.考点:生活中的平移现象二、填空题(每小题3分,共24分)11、17,144,145【分析】由题意观察题干这些勾股数,根据所给的勾股数找出三个数之间的关系即可.【详解】解:因为这些勾股数的“勾”都是奇数,且从3起就没断过,所以从3、5、7…依次推出第8组的“勾”为17,继续观察可知弦-股=1,利用勾股定理假设股为m,则弦为m+1,所以有,解得,,即第8组勾股数为17,144,145.故答案为17,144,145.【点睛】本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及勾股定理进行分析即可.12、【解析】试题分析:找分母各项的系数的最小公倍数,和相同字母的次数最高的项,故最简公分母为.考点:最简公分母13、【解析】根据绝对值都是非负数,可得一个数的绝对值【详解】∵,∴的绝对值是3﹣,故答案为:3﹣.【点睛】本题考查了绝对值的化简,一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数.14、>【分析】先把4写成,再进行比较.【详解】故填:>.【点睛】本题考查实数比较大小,属于基础题型.15、25º【分析】由平行四边形的性质和折叠的性质可得AD∥BC,∠BDA=∠BDG,即可求解.【详解】∵将平行四边形ABCD沿对角线BD折叠,∴AD∥BC,∠BDA=∠BDG,∴∠1=∠ADG=50°,且∠ADG=∠BDA+∠BDG,∴∠BDA=25°,故答案为:25°.【点睛】本题考查了翻折变换,折叠的性质,平行四边形的性质,灵活运用折叠的性质是本题的关键.16、1【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】解:如图所示:所标数字处都可以使得整个被涂黑的图案构成一个轴对称图形,共1种涂法.故答案为:1.【点睛】本题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.17、125°【详解】∵△ABC中,∠A=70°,∴∠ABC+∠ACB=180°−∠A=180°−70°=110°∴BP,CP分别为∠ABC与∠ACP的平分线,∴∠2+∠4=(∠ABC+∠ACB)=×110°=55°∴∠P=180°−(∠2+∠4)=180°−55°=125°故答案为125°.18、85°.【解析】试题分析:令A→南的方向为线段AE,B→北的方向为线段BD,根据题意可知,AE,DB是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角.2、三角形内角和.三、解答题(共66分)19、(1)乙车比甲车晚出发1小时;(2)乙车出发1.5小时后追上甲车;(3)在乙车行驶过程中,当t为1或2时,两车相距20千米.【分析】(1)从图像及题意可直接进行解答;(2)设甲车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数解析式为,乙车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数解析式为,然后根据图像可求出函数解析式,进而联立两个函数关系求解;(3)由(2)及题意可分类进行求解,即当乙车追上甲车前和当乙车追上甲车后.【详解】解:(1)由图像可得:甲车的图像是从原点出发,而乙车的图像经过点,则:所以乙车比甲车晚出发1小时;答:乙车比甲车晚出发1小时.(2)设甲车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数解析式为,由图像得,把代入得:,解得,;设乙车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数解析式为,由图像得,把代入得:,解得,,,解得,(小时).答:乙车出发1.5小时后追上甲车.(3)由(2)可得:甲车函数解析式为,乙车的函数解析式为,当乙车追上甲车前两车相距20千米时,,解得;当乙车追上甲车后两车相距20千米时,,解得;2-1=1(小时)或3-1=2(小时);在乙车行驶过程中,当t为1或2时,两车相距20千米.【点睛】本题主要考查一次函数的实际应用,熟练掌握一次函数的实际应用是解题的关键.20、(1)见解析(2)13【分析】(1)依次找到各顶点关于y轴的对称点,再顺次连接即可;(2)根据割补法即可求解.【详解】(1)如图,为所求;(2)多边形的面积=6×4-2××3×3-2××2×1=24-9-2=13【点睛】此题主要考查坐标与图形,解题的关键是熟知关于y轴的坐标特点.21、∠BAC的度数为20°【分析】根据等边三角形各内角为60°,等腰三角形底角相等,三角形内角和为180°、∠DAE=∠DBC即可120°+∠BAC=60°+∠ABC,即可解题.【详解】解:∵△ADB和△ACE是等边三角形,∴∠DAB=∠DBA=∠CAE=60°,∴∠DAE=60°+∠BAC+60°=120°+∠BAC,∴∠DBC=60°+∠ABC,又∵∠DAE=∠DBC,∴120°+∠BAC=60°+∠ABC,即∠ABC=60°+∠BAC.∵△ABC是等腰三角形,∴∠ABC=∠ACB=60°+∠BAC.设∠BAC的度数为x,则x+2(x+60°)=180°,解得x=20°,∴∠BAC的度数为20°.【点睛】此题考查等腰三角形底角相等的性质,等边三角形各内角为60°的性质,三角形内角和为180°的性质,本题中求得120°+∠BAC=60°+∠ABC是解题的关键.22、(1)1700,10,35;(2)y=40x;(3)小明先到,这时爷爷离开山顶还有175米【分析】(1)根据图象信息即可求解;(2)根据待定系数法即可求解;(3)先求出小明花的时间,比较即可得出结论,然后根据爷爷的速度即可求得离山顶的距离.【详解】解:(1)根据图象知:爷爷行走的总路程是1700米,他在途中休息了10分钟,爷爷休息后行走的速度是:35米/分钟;(2)设函数关系式为可得:解得:∴函数关系式为:y=40x;(3)(分钟),(分钟)所以,从爷爷出发开始计时,小明50分钟到达山顶.因为爷爷用了55分钟,所以小明先到.这时爷爷离终点还有(55-50)×35=175(米)答:小明先到,这时爷爷离山顶还有175米.【点睛】此题主要考查观察函数图象和待定系数法求正比例函数解析式,正确读出函数图象的信息是解题关键.23、(1)详见解析.(2)100°.【分析】(1)如图:作出点P关于AC、BC的对称点D、G,然后连接DG交AC、BC于两点,标注字母M、N;
(2)根据对称的性质,易求得∠C+∠EPF=180°,由∠ACB=48°,易求得∠D+∠G=48°,即而求得答案.【详解】解:(1)①
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 元宵节日记汇编9篇
- 物流管理专业求职信
- 销售工作心得体会范文-心得体会范文
- 人性的弱点读后感版
- 范文端午节活动方案合集6篇
- 我的青春我的梦演讲稿3篇
- DB12∕T 1055-2021 机动车排放达标维修服务规范
- 个人对老师的感言(160句)
- 脂代谢课件教学课件
- 骨髓检查课件教学课件
- 2022年深圳市地铁集团有限公司招聘笔试题库及答案解析
- 《分数四则混合运算》-完整版PPT
- 高校教师岗前培训题库完整版
- 北师大版数学二年级上册《有多少张贴画》
- 妇产科课件-胎儿窘迫
- 临时用工安全安全教育
- GB∕T 33217-2016 冲压件毛刺高度
- 贷款客户信息登记表
- 旅游政策与法规 教学大纲
- 垃圾焚烧锅炉低温烘炉方案
- 直线和双曲线交点问题
评论
0/150
提交评论