版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知,垂足为,,,则可得到,理由是()A. B. C. D.2.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差 B.中位数 C.众数 D.平均数3.如图,,和,和为对应边,若,,则等于()A. B. C. D.4.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为().A.2 B.2.5 C.3 D.3.55.若等腰三角形的两边长分别为6和8,则周长为()A.20或22 B.20 C.22 D.无法确定6.若函数y=(m-1)x∣m∣-5是一次函数,则m的值为(
)A.±1 B.-1 C.1 D.27.在△ABC中,D是BC上的一点,且△ABD的面积与△ADC的面积相等,则线段AD为△ABC的().A.高 B.角平分线 C.中线 D.不能确定8.若方程组的解是,则的值分别是()A.2,1 B.2,3 C.1,8 D.无法确定9.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤310.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为()A. B. C. D.二、填空题(每小题3分,共24分)11.正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为____.12.因式分解:3x3﹣12x=_____.13.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩_____.14.如图,已知点、分别是的边、上的两个动点,将沿翻折,翻折后点的对应点为点,连接测得,.则__________.15.已知,函数和的图象相交于点,则根据图象可得关于的方程组的解是_______.16.如图,在中,,的角平分线交于点,连接并延长交于,于,若,,则____________.17.估算≈_____.(精确到0.1)18.若m+n=1,mn=2,则的值为_____.三、解答题(共66分)19.(10分)三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图,△ABC中,AB=AC,且∠A=36°.(1)在图中用尺规作边AB的垂直平分线交AC于D,连接BD(保留作图痕迹,不写作法).(2)请问△BDC是不是黄金三角形,如果是,请给出证明,如果不是,请说明理由.20.(6分)数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点为的中点时,如图1,确定线段与的大小关系,请你直接写出结论:(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,与的大小关系是:(填“>”,“<”或“=”).理由如下:如图2,过点作,交于点.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形中,点在直线上,点在直线上,且.若的边长为1,,求的长(请你直接写出结果).21.(6分)先化简,再求值:,其中x满足x2﹣x﹣1=1.22.(8分)我市某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:(1)根据图示求出表中的、、平均数中位数众数九(1)85九(2)85100,,.(2)小明同学已经算出了九(2)班复赛成绩的方差:,请你求出九(1)班复赛成绩的方差;(3)根据(1)、(2)中计算结果,分析哪个班级的复赛成绩较好?23.(8分)已知,在平面直角坐标系中,、,m、n满足.C为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)如图1,当点P在线段AB上运动时,点D恰在线段OA上,则PE与AB的数量关系为.(2)如图2,当点D在点A右侧时,(1)中结论是否成立?若成立,写出证明过程;若不成立,说明理由.(3)设AB=5,若∠OPD=45°,直接写出点D的坐标.24.(8分)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.25.(10分)如图,∠ADB=∠ADC,∠B=∠C.(1)求证:AB=AC;(2)连接BC,求证:AD⊥BC.26.(10分)如图,在中,,分别是边,上的点,且.求证:四边形为平行四边形.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据全等三角形的判定定理分析即可.【详解】解:∵∴∠AOB=∠COD=90°在Rt△AOB和Rt△COD中∴(HL)故选A.【点睛】此题考查的是全等三角形的判定定理,掌握用HL判定两个三角形全等是解决此题的关键.2、A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差3、A【分析】根据全等三角形的性质求出∠D,再用三角形的内角和定理即可求解.【详解】∵∴∠D=∠A=123°又∴=180°-∠D-∠F=180°-123°-39°=18°故选:A【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应角相等及三角形的内角和定理是关键.4、C【分析】依据全等三角形的性质及等量代换即可求出.【详解】解:∵△ABC≌△DAE,∴AE=BC=2,AC=DE=5,∴CE=AC−AE=3.故选:C.【点睛】找到全等三角形的对应边是关键.5、A【解析】若6是腰长,则三角形的三边分别为6、6、8,能组成三角形,周长=6+6+8=20,若6是底边长,则三角形的三边分别为6、8、8,能组成三角形,周长=6+8+8=1,综上所述,三角形的周长为20或1.故选A.6、B【解析】根据一次函数的概念,形如y=kx+b(k≠0,k、b为常数)的函数为一次函数,故可知m-1≠0,|m|=1,解得m≠1,m=±1,故m=-1.故选B点睛:此题主要考查了一次函数的概念,利用一次函数的一般式y=kx+b(k≠0,k、b为常数),可得相应的关系式,然后求解即可,这是一个中考常考题题,比较简单.7、C【分析】三角形ABD和三角形ACD共用一条高,再根据S△ABD=S△ADC,列出面积公式,可得出BD=CD.【详解】设BC边上的高为h,∵S△ABD=S△ADC,∴×h×BD=×h×CD,故BD=CD,即AD是中线.故选C.8、B【分析】方程组的解就是能够使方程组中的方程同时成立的未知数的解,把方程组的解代入方程组即可得到一个关于m,n的方程组,即可求得m,n的值.【详解】根据题意,得,解,得m=2,n=1.故选:B.【点睛】本题主要考查了方程组解的定义,方程组的解就是能够使方程组中的方程同时成立的未知数的解.9、C【分析】作PM⊥OB于M,根据角平分线的性质得到PM=PE,得到答案.【详解】解:作PM⊥OB于M,∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3,故选C.【点睛】本题考查了角平分线的性质,属于简单题,熟悉角平分线的性质是解题关键.10、B【分析】根据三人说法都错了得出不等式组解答即可.【详解】根据题意可得:,可得:,∴故选B.【点睛】此题考查一元一次不等式组的应用,关键是根据题意得出不等式组解答.二、填空题(每小题3分,共24分)11、或【分析】分两种情况进行分析,①当BF如图位置时,②当BF为BG位置时;根据相似三角形的性质即可求得BM的长.【详解】如图,当BF如图位置时,∵AB=AB,∠BAF=∠ABE=90°,AE=BF,
∴△ABE≌△BAF(HL),
∴∠ABM=∠BAM,
∴AM=BM,AF=BE=3,
∵AB=4,BE=3,
∴AE=,
过点M作MS⊥AB,由等腰三角形的性质知,点S是AB的中点,BS=2,SM是△ABE的中位线,
∴BM=AE=×5=,
当BF为BG位置时,易得Rt△BCG≌Rt△ABE,
∴BG=AE=5,∠AEB=∠BGC,
∴△BHE∽△BCG,
∴BH:BC=BE:BG,
∴BH=.故答案是:或.【点睛】利用了全等三角形的判定和性质,等角对等边,相似三角形的判定和性质,勾股定理求解.12、3x(x+2)(x﹣2)【分析】先提公因式3x,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13、90分.【解析】试题分析:根据加权平均数的计算公式求解即可.解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.考点:加权平均数.14、1【分析】连接CC'.根据折叠的性质可知:∠DCE=∠DC'E.根据三角形外角的性质得到∠ECC'+∠EC'C=∠AEC'=10°.在△BCC'中,根据三角形内角和定理即可得出结论.【详解】连接CC'.根据折叠的性质可知:∠DCE=∠DC'E.∵∠ECC'+∠EC'C=∠AEC'=10°,∴∠BC'D=180°-(∠C'BC+2∠DCE+∠ECC'+∠EC'C)=180°-(∠C'BC+2∠DCE+10°)=180°-(92°+10°)=1°.故答案为:1.【点睛】本题考查了折叠的性质、三角形外角的性质以及三角形内角和定理.连接CC'把∠AEC'转化为∠ECC'+∠EC'C的度数是解答本题的关键.15、【分析】先把P(m,-1)代入y=2x中解出m的值,再根据点P的坐标是方程组的解作答即可.【详解】解:将点P(m,-1)代入,得2m=-1,解得m=,∴的解即为的解,即为.故答案为:.【点睛】本题考查了一次函数与二元一次方程组,从函数的角度看,就是寻求两个一次函数的交点,属于基础题.16、10【分析】作交于,由平分,,得到,根据角平分线的定义得到,根据直角三角形的性质即可得到结论.【详解】解:作交于,∵平分,,∴,∵的角平分线交于点,∴平分,∵,∴,∴故答案为10【点睛】本题考查了角平分线的性质以及直角三角形中,角所对边为斜边的一半,灵活运用性质定理是解题的关键.17、1.2【分析】由于2<3<16,可得到的整数部分是1,然后即可判断出所求的无理数的大约值.【详解】∵2<3<16,∴1<<4,∴的整数部分是1,∵1.162=2.2856,1.172=3.0482,∴≈1.2,故答案是:1.2【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.18、【解析】三、解答题(共66分)19、(1)详见解析;(2)△BDC是黄金三角形,详见解析【分析】(1)可根据基本作图中线段垂直平分线的作法进行作图;(2)求得各个角的度数,根据题意进行判断.【详解】解:(1)如图所示(2)△BDC是黄金三角形∵ED是AB的垂直平分线∴AD=BD∴∠ABD=∠A=36°而在等腰△ABC中,∠ABC=∠C=72°∴∠CBD=∠ABC-∠ABD=72°-36°=36°∴∠BDC=180°-∠C-∠CBD=180°-72°-36°=72°∴△BDC是等腰三角形且顶角∠CBD=36°∴△BDC是黄金三角形.【点睛】此题主要考查等腰三角形的判定与性质,解题的关键是熟知垂直平分线的作法及等腰三角形的性质.20、(1)=;(2)=,过程见解析;(1)CD的长是1或1.【解析】方法一:如图,等边三角形中,是等边三角形,又.方法二:在等边三角形中,而由是正三角形可得21、2.【分析】根据分式的运算法则进行计算化简,再将x2=x+2代入即可.【详解】解:原式=×=×=,∵x2﹣x﹣2=2,∴x2=x+2,∴==2.22、(1),;(2);(3)九(1)班的总体成绩较好【分析】(1)先根据条形统计图统计出每个班五位同学的成绩,然后再按照平均数,中位数和众数的概念计算即可得出答案;(2)按照方差的计算公式计算九(1)班复赛成绩的方差即可(3)通过比较平均数,中位数,众数和方差,即可得出结论.【详解】(1)由条形统计图可知九(1)班5名同学的复赛成绩如下:85,75,80,85,100九(2)班5名同学的复赛成绩如下:70,100,100,75,80∴(2)(3)对比发现,九(1)班与九(2)班平均成绩相同,九(1)班成绩的中位数比九(2)班大,九(1)班成绩的众数比九(2)班小,说明九(2)班的个别成绩突出.∴九(1)班比九(2)班成绩更稳定综上所述,九(1)班的总体成绩较好.【点睛】本题主要考查数据的统计与分析,掌握平均数,众数,中位数,方差的概念和求法是解题的关键.23、(1)AB=2PE;(2)成立,理由见解析;(3)点D.【分析】(1)根据非负数的性质分别求出m、n,证明△POC≌△DPE,可得出OC=PE,由AB=2OC,则结论得出;(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC⊥AB,证明△POC≌△DPE,根据全等三角形的性质得到OC=PE,可得到答案;(3)证明△POB≌△DPA,得到PA=OB=5,DA=PB,根据坐标与图形性质解答即可.【详解】解:(1)∵(m﹣n)2+|m﹣5|=0,∴m﹣n=0,m﹣5=0,∴m=n=5,∴A(5,0)、B(0,5),∴AC=BC=5,∴△AOB为等腰直角三角形,∴∠AOC=∠BOC=45°,OC⊥AB,∵PO=PD,∴∠POD=∠PDO,∵D是x轴正半轴上一点,∴点P在BC上,∵∠POD=45°+∠POC,∠PDO=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,在此处键入公式。∴△POC≌△DPE(AAS),∴OC=PE,∵C为AB的中点,∴AB=2OC,∴AB=2PE.故答案为:AB=2PE.(2)成立,理由如下:∵点C为AB中点,∴∠AOC=∠BOC=45°,OC⊥AB,∵PO=PD,∴∠POD=∠PDO,∵∠POD=45°﹣∠POC,∠PDO=45°﹣∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE,又∠AOC=∠BAO=45°∴OC=AC=AB∴AB=2PE;(3)∵AB=5,∴OA=OB=5,∵OP=PD,∴∠POD=∠PDO==67.5°,∴∠APD=∠PDO﹣∠A=22.5°,∠BOP=90°﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年江西考客运资格证都考什么内容
- 2024年宁夏客运资格证答案
- 出租简易柜子合同范例
- 楼道保洁合同范例
- 2024年舟山小型客运从业资格证理论考试题
- 2024年贵州客运资格证试题完整版
- 机构员工劳动合同范例
- 木工工人用工合同范例
- 个体服装购销合同范例6
- 吸塑购销合同模板
- 《人体解剖学》课程思政教学设计案例(一等奖)
- DB44∕T 858-2011 空调器高处作业安全规范
- 实验室十大危险操作和安全隐患
- 妇幼保健院关于修订岗位轮转制度
- 气候影响着人类活动人类活动对气候的影响
- 顶管及盾构施工技术及特点(62页)
- 生产部管理人员考试题(新进转正)范本
- 高中研究性学习如何选择、确立研究性学习课题PPT通用PPT课件
- 6S管理知识图解
- 高速铁路ZPW-2000轨道电路
- 县国家税务局文件材料归档范围及文书档案保管期限表
评论
0/150
提交评论