




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图所示,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是()A.SSS B.SAS C.AAS D.ASA2.四边形ABCD中,若∠A+∠C=180°且∠B:∠C:∠D=3:5:6,则∠A为().A.80° B.70° C.60° D.50°3.如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.36° B.72° C.50° D.46°4.下列各命题是真命题的是()A.过一点有且只有一条直线与已知直线垂直. B.三角形任意两边之和小于第三边.C.三角形的一个外角大于它的任何一个内角. D.同位角相等.5.已知图中的两个三角形全等,则∠α等于()A.72° B.60° C.58° D.48°6.如图,在,,以为圆心,任意长为半径画弧,分别交,于点,,再分别以,,为圆心,大于长为半径画弧,两弧交于点,作弧线,交于点.已知,,则的长为()A. B. C. D.7.如图,在直线l上有三个正方形m、q、n,若m、q的面积分别为5和11,则n的面积()A.4 B.6 C.16 D.558.如果把分式中和都扩大10倍,那么分式的值()A.扩大2倍 B.扩大10倍 C.不变 D.缩小10倍9.如图:是的外角,平分,若,,则等于()A. B. C. D.10.在下列所示的四个图形中,属于轴对称图案的有()A. B. C. D.二、填空题(每小题3分,共24分)11.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车辆,则列出的不等式为________.12.一个六边形的六个内角都是120°,连续四边的长依次为2.31,2.32,2.33,2.31,则这个六边形的周长为_____.13.在函数y=中,自变量x的取值范围是____.14.如果是一个完全平方式,则的值是_________.15.直线y=x+1与x轴交于点D,与y轴交于点A1,把正方形A1B1C1O1、A2B2C2C1和A3B3C3C2按如图所示方式放置,点A2、A3在直线y=x+1上,点C1、C2、C3在x轴上,按照这样的规律,则正方形A2020B2020C2020C2019中的点B2020的坐标为_____.16.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____边形.17.如图,已知,且,那么是的________(填“中线”或“角平分线”或“高”).18.若点在第二、四象限角平分线上,则点的坐标为__________.三、解答题(共66分)19.(10分)如图为一个广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求图中△ABC的周长和面积.20.(6分)计算:21.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的平分线,交BC于点D;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若BD=5,CD=3,求AC的长.22.(8分)如图,AB=AC,AD=AE.求证:∠B=∠C.23.(8分)已知一次函数的解析式为,求出关于轴对称的函数解析式.24.(8分)(1)计算:(11a3﹣6a1+3a)÷3a﹣1;(1)因式分解:﹣3x3+6x1y﹣3xy1.25.(10分)如图,在ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分线,DE交BC于点D,交AB于点E,求AE的长.26.(10分)如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.(1)求证:AE=CF;(2)求∠ACF的度数.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据图形,未污染的部分两角与这两角的夹边可以测量,然后根据全等三角形的判定方法解答即可.【详解】解:小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是:两角及其夹边分别相等的两个三角形全等(ASA).故选:D.【点睛】本题考查了全等三角形的判定,掌握三角形全等的判定是解题的关键.2、A【解析】试题分析:由∠A+∠C=180°根据四边形的内角和定理可得∠B+∠D=180°,再设∠B=3x°,∠C=5x°,∠D=6x°,先列方程求得x的值,即可求得∠C的度数,从而可以求得结果.∵∠B:∠C:∠D=3:5:6∴设∠B=3x°,∠C=5x°,∠D=6x°∵∠A+∠C=180°∴∠B+∠D=180°∴3x+6x=180,解得x=20∴∠C=100°∴∠A=180°-100°=80°故选A.考点:四边形的内角和定理点评:四边形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.3、B【分析】由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【详解】解:由折叠的性质得:∠D=∠C=36°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+72°,则∠1﹣∠2=72°.故选:B.【点睛】此题考查了翻折变换(折叠问题),以及外角性质,熟练掌握折叠的性质是解本题的关键.4、A【分析】根据命题的真假依次判断即可求解.【详解】A.过一点有且只有一条直线与已知直线垂直,正确.B.三角形任意两边之和大于第三边,故错误.C.三角形的一个外角大于它的任何一个不相邻的内角,故错误.D.两直线平行,同位角相等,故错误.故选A.【点睛】此题主要考查命题真假的判断,解题的关键是熟知三角形的性质及平行线、相交线的性质.5、D【分析】直接利用全等三角形的性质得出对应角进而得出答案.【详解】解:∵图中的两个三角形全等,∴∠α=180°﹣60°﹣72°=48°.故选D.【点睛】本题考查全等三角形的性质,解题的关键是掌握全等三角形的性质.6、C【分析】直接利用基本作图方法得出AE是∠CAB的平分线,进而结合全等三角形的判定与性质得出AC=AD,再利用勾股定理得出AC的长.【详解】过点E作ED⊥AB于点D,由作图方法可得出AE是∠CAB的平分线,∵EC⊥AC,ED⊥AB,∴EC=ED=3,在Rt△ACE和Rt△ADE中,,∴Rt△ACE≌Rt△ADE(HL),∴AC=AD,∵在Rt△EDB中,DE=3,BE=5,∴BD=4,设AC=x,则AB=4+x,故在Rt△ACB中,AC2+BC2=AB2,即x2+82=(x+4)2,解得:x=1,即AC的长为:1.故答案为:C.【点睛】此题主要考查了基本作图以及全等三角形的判定与性质、勾股定理等知识,正确得出BD的长是解题关键.7、C【分析】运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.【详解】解:由于m、q、n都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,∴∠BAC=∠DCE,且AC=CD,∠ABC=∠DEC=90°∴△ACB≌△DCE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即Sn=Sm+Sq=11+5=16,∴正方形n的面积为16,故选C.【点睛】本题主要考查对全等三角形和勾股定理的综合运用,关键是证明三角形全等.8、C【分析】根据题意,将分式换成10x,10y,再化简计算即可.【详解】解:若和都扩大10倍,则,故分式的值不变,故答案为:C.【点睛】本题考查了分式的基本性质,解题的关键是用10x,10y替换原分式中的x,y计算.9、D【分析】根据三角形外角性质求出,根据角平分线定义求出即可.【详解】∵,
∴,
∵平分,
∴,
故选:D.【点睛】本题考查了角平分线定义和三角形外角性质,能熟记三角形外角性质的内容是解此题的关键.10、D【分析】根据轴对称图形的定义:经过某条直线(对称轴)对折后,图形完全重叠,来判断各个选项可得.【详解】轴对称图形是经过某条直线(对称轴)对折后,图形完全重叠满足条件的只有D故选:D【点睛】本题考查轴对称的判定,注意区分轴对称图形和中心对称图形的区别.二、填空题(每小题3分,共24分)11、【分析】首先根据题意可得改进生产工艺后,每天生产汽车(x+6)辆,根据关键描述语:现在15天的产量就超过了原来20天的产量列出不等式即可.【详解】解:设原来每天最多能生产x辆,由题意得:
15(x+6)>20x,故答案为:【点睛】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,抓住关键描述语.12、13.3【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【详解】解:如图,AB=2.1,BC=2.2,CD=2.33,DE=2.1,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APF、△BGC、△DHE、△GHP都是等边三角形.∴GC=BC=2.2,DH=DE=2.1.∴GH=2.2+2.33+2.1=6.96,FA=PA=PG﹣AB﹣BG=6.96﹣2.1﹣2.2=2.33,EF=PH﹣PF﹣EH=6.96﹣2.33﹣2.1=2.2.∴六边形的周长为2.1+2.2+2.33+2.1+2.2+2.33=13.3.故答案为:13.3.【点睛】本题考查了等边三角形的性质及判定定理:解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.13、x≥-2且x≠1【分析】根据二次根式被开方数大于等于1,分式分母不等于1列式计算即可得解.【详解】解:由题意得,x+2≥1且2x≠1,
解得:x≥-2且x≠1.
故答案为:x≥-2且x≠1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为1;(3)当函数表达式是二次根式时,被开方数非负.14、1或-1【分析】首末两项是2x和3这两个数的平方,那么中间一项为加上或减去2x和3积的2倍.【详解】解:∵是一个完全平方式,
∴此式是2x与3和的平方,即可得出-a的值,
∴(2x±3)2=4x2±1x+9,
∴-a=±1,
∴a=±1.
故答案为:1或-1.【点睛】此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,注意积的2倍的符号,避免漏解.15、(22020﹣1,22019)【分析】求出直线y=x+1与x轴、y轴的交点坐标,进而确定第1个正方形的边长,再根据等腰直角三角形的性质,得出第2个、第3个……正方形的边长,进而得出B1、B2、B3……的坐标,根据规律得到答案.【详解】解:直线y=x+1与x轴,y轴交点坐标为:A1(0,1),即正方形OA1B1C1的边长为1,∵△A1B1A2、△A2B2A3,都是等腰直角三角形,边长依次为1,2,4,8,16,∴B1(1,1),B2(3,2),B3(7,4),B4(15,8),即:B1(21﹣1,20),B2(22﹣1,21),B3(23﹣1,22),B4(24﹣1,23),故答案为:B2020(22020﹣1,22019).【点睛】考查一次函数的图象和性质,正方形的性质、等腰直角三角形的性质以及找规律等知识,探索和发现点B的坐标的概率是得出答案的关键.16、六【分析】n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.【详解】设多边形的边数为n,依题意,得:(n﹣2)•180°=2×360°,解得n=6,故答案为:六.【点睛】本题考查了多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.17、中线【分析】通过证明,可得,从而得证是的中线.【详解】∵∴∵,∴∴∴是的中线故答案为:中线.【点睛】本题考查了全等三角形的问题,掌握全等三角形的性质以及判定定理是解题的关键.18、(4,-4)【分析】根据第二、第四象限坐标轴夹角平分线上的点,横纵坐标互为相反数,由此就可以得到关于m的方程,解出m的值,即可求得P点的坐标.【详解】解:∵点P(5+m,m-3)在第二、四象限的角平分线上,
∴(5+m)+(m-3)=0,
解得:m=-1,
∴P(4,-4).
故答案为:(4,-4).【点睛】本题考查了点的坐标的知识,注意掌握知识点:第二、四象限的夹角角平分线上的点的横纵坐标互为相反数.三、解答题(共66分)19、△ABC的周长为41m,△ABC的面积为84m1.【解析】直接利用勾股定理逆定理得出AD⊥BC,再利用勾股定理得出DC的长,进而得出答案.【详解】解:在△ABD中,∵AB=13m,AD=11m,BD=5m,∴AB1=AD1+BD1,∴AD⊥BC,在Rt△ADC中,∵AD=11m,AC=15m,∴DC==9(m),∴△ABC的周长为41m,△ABC的面积为84m1.【点睛】此题主要考查了勾股定理以及勾股定理的逆定理,正确得出DC的长是解题关键.20、【分析】先根据算术平方根、立方根、绝对值的意义逐项化简,再算加减即可;【详解】解:原式===【点睛】本题考查了实数的混合运算,熟练掌握算术平方根、立方根、绝对值的意义是解答本题的关键.21、(1)见解析;(2)6.【分析】(1)先以A为圆心,小于AC长为半径画弧,交AC,AB运用H、F;再分别以H、F为圆心,大于HF长为半径画弧,两弧交于点M,最后画射线AM交CB于D;(2)过点D作DE⊥AB,垂足为E,先证明△ACD≌△AED得到AC=AE,CD=DE=3,再由勾股定理得求的BE长,然后在Rt△ABC中,设AC=x,则AB=AE+BE=x+4,最后再次运用勾股定理求解即可.【详解】解:(1)如图:(2)过点D作DE⊥AB,垂足为E.则∠AED=∠BED=90°∵AD平分∠BAC∴CD=DE在RtACD和RtAED中CD=DE,AD=AD∴△CDE≌△AED(HL)∴AC=AE,CD=DE=3在Rt△BDE中,由勾股定理得:DE2+BE2=BD2∴BE2=BD2-DE2=52-32=16.∴BE=4在Rt△ABC中,设AC=x,则AB=AE+BE=x+4.由勾股定理得:AC2+BC2=AB2,即x2+82=(x+4)2解得:x=6,即AC=6.【点睛】本题主要考查了作角平分线、以及角平分线的性质、勾股定理的应用、全等三角形的判定和性质.解题的关键在于作出角平分线并利用其性质证明三角形全等.22、证明见解析.【分析】欲证明∠B=∠C,只要证明△AEB≌△ADC.【详解】证明:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS)∴∠B=∠C.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件23、y=-2x-1【分析】求出与x轴、y轴的交点坐标,得到关于y轴对称点的坐标,即可求出过此两点的函数解析式.【详解】令中y=0,得x=;x=0,得y=-1,∴与x轴交点为(,0),与y轴交点为(0,-1),设关于y轴对称的函数解析式为y=kx+b,过点(-,0)、(0,-1),∴,解得,∴关于轴对称的函数解析式为y=-2x-1.【点睛】此题考查待定系数法求函数解析式,题中求出原函数解析式与坐标轴的交点,得到关于y轴对称点的坐标是解题的关键.24、(1)4a1-1a;(1)-3(x-y)1【分析】(1)根据多项式除单项式先用多项式的每一项除以单项式,再把所得的商相加,计算即可;(1)先提取公因式-3x,再对余下的多项式利用完全平方公式继续分解.【详解】解:(1)原式=4a1﹣1a+1﹣1=4a1﹣1a;(1)原式=﹣3x(x1﹣1xy+y1)=﹣3(x﹣y)1.25、【分析】根据勾股定理的逆定理可得是直角三角形,且∠A=9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业技术秘密保护合同
- 与日历有关的课件模板
- 上海邦德职业技术学院《水泵及水泵站》2023-2024学年第二学期期末试卷
- 云南省曲靖市师宗县部分校2025届小升初模拟数学测试卷含解析
- 宣城市广德县2025届小学六年级第二学期小升初数学试卷含解析
- 宁夏大学新华学院《即兴伴奏Ⅰ》2023-2024学年第一学期期末试卷
- 江西省九江市名校2025届初三第二次质量考评英语试题试卷含答案
- 石家庄铁路职业技术学院《数字插画设计》2023-2024学年第二学期期末试卷
- 山东省临朐市重点达标名校2025届中考化学试题压轴试卷含解析
- 南华大学船山学院《医学哲学》2023-2024学年第一学期期末试卷
- 《西亚》教学课件(第1课时)(25张)公开课教案课件
- 2022年四川省绵阳市(初三学业水平考试)中考数学真题试卷含详解
- 黑产大数据 信贷欺诈虚假流水研究报告 2024
- 2022信息物理系统(CPS)安全技术研究
- 2024年南阳农业职业学院单招职业适应性测试题库附答案
- 2024年药学服务技能大赛(省赛)备考试题库(含答案)
- 2.2.3 茶会场地布置
- MOOC 音乐与科学-南京邮电大学 中国大学慕课答案
- 初中地理实验设计案例
- 施工现场一级动火作业审批表
- 肿瘤患者延续护理
评论
0/150
提交评论