版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图为某居民小区中随机调查的户家庭一年的月平均用水量(单位:)的条形统计图,则这户家庭月均用水量的众数和中位数分别是().A., B., C., D.,2.如果一次函数的图象经过第一象限,且与轴负半轴相交,那么()A., B., C., D.,3.若将实数,,,这四个数分别表示在数轴上,则其中可能被如图所示的墨迹覆盖的数是().A. B. C. D.4.已知+c2﹣6c+9=0,则以a,c为边的等腰三角形的周长是()A.8 B.7 C.8或7 D.135.如果向西走3米,记作-3m,那么向东走5米,记作().A.3m B.5m C.-3m D.-5m6.已知直角三角形的两条边长分别是3cm和4cm,则它的第三边长为()A.4cm B.cm C.5cm D.5cm或cm7.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为()A.北偏西 B.南偏西75°C.南偏东或北偏西 D.南偏西或北偏东8.若分式的值为0,则的值为()A.1 B.-1 C.1或-1 D.09.若分式方程去分母后所得整式方程的解不是原分式方程的解,则实数a的取值是()A.4或8 B.4 C.8 D.0或210.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A. B. C.4 D.511.在平面直角坐标系中,点的位置所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.二、填空题(每题4分,共24分)13.若,则______.14.在植树活动中,八年级一班六个小组植树的棵树分别是:5,7,3,,6,4.已知这组数据的众数是5,则该组数据的方差是_________.15.已知直线l1:y=x+1与直线l2:y=mx+n相交于点P(2,b),则关于x,y的方程组的解是______.16.如图,已知方格纸中是个相同的正方形,则____度.17.已知矩形的长为,宽为,则该矩形的面积为_________.18.因式分解:____.三、解答题(共78分)19.(8分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,现有两种进货方案①冰箱30台,空调70台;②冰箱50台,空调50台,那么该商店要获得最大利润应如何进货?20.(8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元。设购进A种树苗x棵,购买两种树苗的总费用为w元。(1)写出w(元)关于x(棵)的函数关系式;(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用。21.(8分)先仔细阅读材料,再尝试解决问题:我们在求代数式的最大或最小值时,通过利用公式对式子作如下变形:,因为,所以,因此有最小值2,所以,当时,,的最小值为2.同理,可以求出的最大值为7.通过上面阅读,解决下列问题:(1)填空:代数式的最小值为______________;代数式的最大值为______________;(2)求代数式的最大或最小值,并写出对应的的取值;(3)求代数式的最大或最小值,并写出对应的、的值.22.(10分)如图,中,,平分交于点.求证:BC=AC+CD.23.(10分)如图,直线l是一次函数y=kx+4的图象,且直线l经过点(1,2).(1)求k的值;(2)若直线l与x轴、y轴分别交于A、B两点,求△AOB的面积.24.(10分)多边形在直角坐标系中如图所示,在图中分别作出它关于轴、轴的对称图形.25.(12分)已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a-b+c的平方根.26.如图,直线y=﹣2x+8分别交x轴,y轴于点A,B,直线yx+3交y轴于点C,两直线相交于点D.(1)求点D的坐标;(2)如图2,过点A作AE∥y轴交直线yx+3于点E,连接AC,BE.求证:四边形ACBE是菱形;(3)如图3,在(2)的条件下,点F在线段BC上,点G在线段AB上,连接CG,FG,当CG=FG,且∠CGF=∠ABC时,求点G的坐标.
参考答案一、选择题(每题4分,共48分)1、B【解析】根据统计图可得众数为,将10个数据从小到大排列:,,,,,,,,,.∴中位数为,故选.2、B【解析】由题意得,函数y=kx+b的图象经过第一、三、四象限,k>0,b<0,故选B.【点睛】本题考查了一次函数图象与系数的关系,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.3、B【分析】根据算术平方根的概念分别估算各个实数的大小,根据题意判断.【详解】<0,2<<3,3<<4,3<<4,∴可能被如图所示的墨迹覆盖的数是,故选:B.【点睛】本题考查的是实数和数轴,算术平方根,正确估算算术平方根的大小是解题的关键.4、C【分析】根据非负数的性质列式求出a、c的值,再分a是腰长与底边两种情况讨论求解.【详解】解:可化为:,∵,,∴,,解得a=2,c=3,①a=2是腰长时,三角形的三边分别为2、2、3,∵2+2=4>3,∴2、2、3能组成三角形,∴三角形的周长为7,②a=2是底边时,三角形的三边分别为2、3、3,能够组成三角形,∴三角形的周长为1;综上所述,三角形的周长为7或1.故选:C.【点睛】本题考查了非负数的性质和等腰三角形的性质,解题的关键是分情况讨论并利用三角形的三边关系进行判断.5、B【解析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向西走3米记作-3米,∴向东走5米记作+5米.故选:B.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.6、D【分析】分4为直角边和斜边两种情况,结合勾股定理求得第三边即可.【详解】设三角形的第三边长为xcm,由题意,分两种情况:当4为直角边时,则第三边为斜边,由勾股定理得:,解得:x=5,当4为斜边时,则第三边为直角边,由勾股定理得:,解得:x=,∴第三边长为5cm或cm,故选:D.【点睛】本题考查了勾股定理,解答的关键是分类确定4为直角边还是斜边.7、C【分析】先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的航行方向与甲船的航行方向垂直,进一步即可得出答案.【详解】解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵,∴乙船的航行方向与甲船的航行方向垂直,∵甲船的航行方向是北偏东75°,∴乙船的航行方向是南偏东15°或北偏西15°.故选:C.【点睛】本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.8、A【解析】根据分式的概念,分式有意义要求分母不为零,所以分式值为零,即分子为零即可.【详解】,,,故选:A.【点睛】考查分式的定义,理解定义以及有意义的条件是解题的关键.9、A【分析】方程的两边都乘以最简公分母,化分式方程为整式方程,求解整式方程,由于整式方程的解不是分式方程的解,即整式方程的解满足最简公分母为0,求出a即可.【详解】解:去分母,得3x﹣a+x=2(x﹣2),整理,得2x=a﹣4,解得x=当x(x﹣2)=0时,x=0或x=2,当x=0时,=0,所以a=4;当x=2时,=2,所以a=1.故选:A.【点睛】本题考查了分式方程、一元二次方程的解法.掌握分式方程产生增根的原因是解决本题的关键.10、C【分析】设BQ=x,则由折叠的性质可得DQ=AQ=9-x,根据中点的定义可得BD=3,在Rt△BQD中,根据勾股定理可得关于x的方程,解方程即可求解.【详解】设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BQD中,x2+32=(9﹣x)2,解得:x=1.故线段BQ的长为1.故选:C.【点睛】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.11、B【分析】观察题目,根据象限的特点,判断出所求的点的横纵坐标的符号;接下来,根据题目的点的坐标,判断点所在的象限.【详解】∵点的横坐标是负数,纵坐标是正数,
∴在平面直角坐标系的第二象限,
故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12、B【分析】先由数轴观察a、b、c的正负和大小关系,然后根据不等式的基本性质对各项作出正确判断.【详解】由数轴可以看出a<b<0<c,因此,A、∵a<b,∴a﹣c<b﹣c,故选项错误;B、∵a<b,∴a+c<b+c,故选项正确;C、∵a<b,c>0,∴ac<bc,故选项错误;D、∵a<c,b<0,∴,故选项错误.故选B.【点睛】此题主要考查了不等式的基本性质及实数和数轴的基本知识,比较简单.二、填空题(每题4分,共24分)13、-1【分析】根据“0的算术平方根是0”进行计算即可.【详解】∵,∴,∴x=-1.故答案为:-1.【点睛】本题考查算术平方根,属于基础题型,要求会根据算术平方根求原数.14、【分析】根据众数、平均数、方差的定义进行计算即可.【详解】∵这组数据5、7、3、x、6、4的众数是5,∴x=5,∴这组数据5、7、3、5、6、4的平均数是=5,∴S2=[(5−5)2+(7−5)2+(3−5)2+(5−5)2+(6−5)2+(4−5)2]=,故答案为.【点睛】本题考查了众数、方差,掌握众数、平均数、方差的定义是解题的关键.15、【分析】首先将点P(2,b)代入直线l1:y=x+1求出b的值,进而得到P点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】解:∵直线y=x+1经过点P(2,b),
∴b=2+1,
解得b=3,
∴P(2,3),
∴关于x的方程组的解为,
故答案为:.【点睛】此题主要考查了二元一次去方程组与一次函数的关系,关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.16、135【解析】如图,由已知条件易证△ABC≌△BED及△BDF是等腰直角三角形,∴∠1=∠EBD,∠2=45°,∵∠3+∠EBD=90°,∴∠1+∠2+∠3=135°.17、【分析】直接利用矩形的性质结合二次根式乘法运算法则计算即可.【详解】解:∵矩形的长为,宽为,∴该矩形的面积为:,故答案为:.【点睛】本题考查了二次根式的应用,掌握矩形的性质是解题的关键.18、【解析】式子中含有x公因式,所以提取公因式法分解因式可得。三、解答题(共78分)19、(1)每台电冰箱与空调的进价分别是2000元,1600元;(2)该商店要获得最大利润应购进冰箱30台,空调70台【分析】(1)根据每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等,可以列出相应的分式方程,从而可以解答本题;(2)根据题意和(1)中的结果,可以计算出两种方案下获得的利润,然后比较大小,即可解答本题.【详解】解:(1)设每台空调的进件为x元,则每台电冰箱的进件为(x+400)元,,解得,x=1600,经检验,x=1600是原分式方程的解,则x+400=2000元,答:每台电冰箱与空调的进价分别是2000元,1600元;(2)当购进冰箱30台,空调70台,所得利润为:(2100﹣2000)×30+(1750﹣1600)×70=13500(元),当购进冰箱50台,空调50台,所得利润为:(2100﹣2000)×50+(1750﹣1600)×50=12500(元),∵13500>12500,∴该商店要获得最大利润应购进冰箱30台,空调70台.【点睛】本题考查分式方程的应用,解答本题的关键是明确题意,利用分式方程的知识解答,注意分式方程一定要检验.20、(1)w=20x+1020;(2)费用最省方案为:购进A种树苗9棵,B种树苗8棵,所需费用为1200元.【分析】(1)根据题意可得等量关系:费用W=A种树苗a棵的费用+B种树苗(17−a)棵的费用可得函数关系式;(2)根据一次函数的性质与不等式的性质得到当x=9时,w有最小值.【详解】解:(1)w=80x+60(17-x)=20x+1020(2)∵k=20>0,w随着x的增大而增大又∵17-x<x,解得x>8.5,∴8.5<x<17,且x为整数∴当x=9时,w有最小值20×9+1020=1200(元)答:费用最省方案为:购进A种树苗9棵,B种树苗8棵,所需费用为1200元.【点睛】此题主要考查了一次函数和一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系与不等关系,列出函数关系式进行求解.21、(2)2,;(2),最小值;(2)当,,时,有最小值-2.【分析】(2)依照阅读材料,把原式写成完全平方公式加一个常数的形式,然后根据完全平方公式前系数正负得出答案;(2)先讨论取得最大值,因为在分母上,所以取得最小值,再根据配方法求解即可;(2)同样配方成完全平方公式加上一个常数的形式.【详解】解:(2),因为,所以,因此有最小值2,所以的最小值为2;,因为,所以,所以有最大值,所以的最大值为;故答案为:2,;(2)∵,因为,所以,当时,,因此有最小值2,即的最小值为2.所以有最大值为;(2),所以当时,,所以当,时,有最小值-2.【点睛】本题是阅读理解题,主要考查了完全平方式、配方的应用和代数式偶次方的非负性等知识,正确理解题意、熟练掌握配方的方法是解题的关键.22、证明见解析.【分析】如图,在线段上截取,连结,由角平分线的性质可得∠ABD=∠EBD=∠ABC,利用SAS可证明△ABD≌△EBD,即可得,,根据等腰三角形的性质可求出∠ACB=∠ABC=36°,根据三角形内角和定理及外角性质可得,即可证明CD=CE,进而可得结论.【详解】如图,在线段上截取,连结,∵平分,∴在和中,∴,∴,.∵,∴,∴,∴∴,∴∴,∴,∴.【点睛】本题考查角平分线的定义、全等三角形的判定与性质、三角形内角和定理、外角性质及等腰三角形的性质,熟练掌握相关性质和判定定理是解题关键.23、(1)k=﹣2;(2)1.【解析】(1)把(1,2)代入y=kx+1,即可求出k的值;(2)分别求出A和B的坐标,然后根据三角形的面积公式可求得答案.【详解】(1)把(1,2)代入y=kx+1,得k+1=2,解得k=﹣2;(2)当y=0时,﹣2x+1=0,解得x=2,则直线y=﹣2x+1与x轴的交点坐标为A(2,0).当x=0时,y=﹣2x+1=1,则直线y=﹣2x+1与y轴的交点坐标为B(0,1).所以△AOB的面积为×2×1=1.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数与坐标轴的交点及三角形的面积,难度不大,注意在计算时要细心.24、见详解【分析】分别作出各点关于x轴的对称点和各点关于y轴的对称点,再顺次连接即可.【详解】如图,多边形在直角坐标系中关于轴的对称图形是多边形A"B"C"D";多边形在直角坐标系中关于轴的对称图形是多边形A'B'C'D'.【点睛】本题考查的是作图−−轴对称变换,熟知关于坐标轴轴对称的点的坐标特点是解答此题的关键.25、(1)a=5,b=2,c=3;(2)3a-b+c的平方根是±1.【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值;(2)把a、b、c的值代入代数式求出值后,进一步
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 双方自愿合作协议模板
- 公司的股权转让的协议书
- mpa案例分析报告
- 2024-2025学年北京市五年级语文上学期期末考试真题重组卷(统编版)-A4
- 2023-2024学年天津市环城四区高二(上)期末语文试卷
- 陕西省渭南市蒲城县2024-2025学年七年级上学期期中生物学试题(原卷版)-A4
- 《工业机器人现场编程》课件-任务2.1认识机器人上下料工作站工程现场
- 《犯罪构成》课件
- 养老院老人情感慰藉制度
- 课件电力工程质量监督检查大纲介绍
- GB/T 44481-2024建筑消防设施检测技术规范
- 甲状腺超声超声征象及TI-RADS分类
- 《白杨礼赞》知识清单
- 2024年2个娃儿的离婚协议书模板
- 2024年三级公共营养师考前冲刺备考题库200题(含详解)
- 《PLC应用技术(西门子S7-1200)第二版》全套教学课件
- Revision Being a good guest(教学设计)-2024-2025学年人教PEP版(2024)英语三年级上册
- 2024七年级历史上册知识点梳理
- 《高危新生儿分类分级管理专家共识(2023)》解读
- 布置我们的家(课件)三年级下册综合实践活动沪科黔科版
- 第七单元测试卷(单元测试)-2024-2025学年五年级上册统编版语文
评论
0/150
提交评论