版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列中,,,则数列的前10项和()A.100 B.210 C.380 D.4002.设,,则()A. B.C. D.3.如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为,若向弦图内随机抛掷200颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为()A.20 B.27 C.54 D.644.已知等差数列满足,公差,且成等比数列,则A.1 B.2 C.3 D.45.设函数,则函数的图像可能为()A. B. C. D.6.已知函数,则不等式的解集为()A. B. C. D.7.已知函数,,若对任意的,存在实数满足,使得,则的最大值是()A.3 B.2 C.4 D.58.已知(为虚数单位,为的共轭复数),则复数在复平面内对应的点在().A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知函数,则()A.1 B.2 C.3 D.410.已知实数满足约束条件,则的最小值是A. B. C.1 D.411.设变量满足约束条件,则目标函数的最大值是()A.7 B.5 C.3 D.212.已知命题:R,;命题:R,,则下列命题中为真命题的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左右焦点为,过作轴的垂线与相交于两点,与轴相交于.若,则双曲线的离心率为_________.14.在平面直角坐标系中,双曲线的一条准线与两条渐近线所围成的三角形的面积为______.15.已知,,,则的最小值是__.16.若四棱锥的侧面内有一动点Q,已知Q到底面的距离与Q到点P的距离之比为正常数k,且动点Q的轨迹是抛物线,则当二面角平面角的大小为时,k的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图1,已知四边形BCDE为直角梯形,,,且,A为BE的中点将沿AD折到位置如图,连结PC,PB构成一个四棱锥.(Ⅰ)求证;(Ⅱ)若平面.①求二面角的大小;②在棱PC上存在点M,满足,使得直线AM与平面PBC所成的角为,求的值.18.(12分)设函数()的最小值为.(1)求的值;(2)若,,为正实数,且,证明:.19.(12分)如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)求二面角的余弦值.20.(12分)已知函数(1)求函数的单调递增区间(2)记函数的图象为曲线,设点是曲线上不同两点,如果在曲线上存在点,使得①;②曲线在点M处的切线平行于直线AB,则称函数存在“中值和谐切线”,当时,函数是否存在“中值和谐切线”请说明理由21.(12分)已知点为椭圆上任意一点,直线与圆交于,两点,点为椭圆的左焦点.(1)求证:直线与椭圆相切;(2)判断是否为定值,并说明理由.22.(10分)某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司年至年的年利润关于年份代号的统计数据如下表(已知该公司的年利润与年份代号线性相关).年份年份代号年利润(单位:亿元)(Ⅰ)求关于的线性回归方程,并预测该公司年(年份代号记为)的年利润;(Ⅱ)当统计表中某年年利润的实际值大于由(Ⅰ)中线性回归方程计算出该年利润的估计值时,称该年为级利润年,否则称为级利润年.将(Ⅰ)中预测的该公司年的年利润视作该年利润的实际值,现从年至年这年中随机抽取年,求恰有年为级利润年的概率.参考公式:,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
设公差为,由已知可得,进而求出的通项公式,即可求解.【详解】设公差为,,,,.故选:B.【点睛】本题考查等差数列的基本量计算以及前项和,属于基础题.2、D【解析】
由不等式的性质及换底公式即可得解.【详解】解:因为,,则,且,所以,,又,即,则,即,故选:D.【点睛】本题考查了不等式的性质及换底公式,属基础题.3、B【解析】
设大正方体的边长为,从而求得小正方体的边长为,设落在小正方形内的米粒数大约为,利用概率模拟列方程即可求解。【详解】设大正方体的边长为,则小正方体的边长为,设落在小正方形内的米粒数大约为,则,解得:故选:B【点睛】本题主要考查了概率模拟的应用,考查计算能力,属于基础题。4、D【解析】
先用公差表示出,结合等比数列求出.【详解】,因为成等比数列,所以,解得.【点睛】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.5、B【解析】
根据函数为偶函数排除,再计算排除得到答案.【详解】定义域为:,函数为偶函数,排除,排除故选【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.6、D【解析】
先判断函数的奇偶性和单调性,得到,且,解不等式得解.【详解】由题得函数的定义域为.因为,所以为上的偶函数,因为函数都是在上单调递减.所以函数在上单调递减.因为,所以,且,解得.故选:D【点睛】本题主要考查函数的奇偶性和单调性的判断,考查函数的奇偶性和单调性的应用,意在考查学生对这些知识的理解掌握水平.7、A【解析】
根据条件将问题转化为,对于恒成立,然后构造函数,然后求出的范围,进一步得到的最大值.【详解】,,对任意的,存在实数满足,使得,易得,即恒成立,,对于恒成立,设,则,令,在恒成立,,故存在,使得,即,当时,,单调递减;当时,,单调递增.,将代入得:,,且,故选:A【点睛】本题考查了利用导数研究函数的单调性,零点存在定理和不等式恒成立问题,考查了转化思想,属于难题.8、D【解析】
设,由,得,利用复数相等建立方程组即可.【详解】设,则,所以,解得,故,复数在复平面内对应的点为,在第四象限.故选:D.【点睛】本题考查复数的几何意义,涉及到共轭复数的定义、复数的模等知识,考查学生的基本计算能力,是一道容易题.9、C【解析】
结合分段函数的解析式,先求出,进而可求出.【详解】由题意可得,则.故选:C.【点睛】本题考查了求函数的值,考查了分段函数的性质,考查运算求解能力,属于基础题.10、B【解析】
作出该不等式组表示的平面区域,如下图中阴影部分所示,设,则,易知当直线经过点时,z取得最小值,由,解得,所以,所以,故选B.11、B【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出约束条件,表示的可行域,如图,由可得,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最大,最大值为,故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.12、B【解析】
根据,可知命题的真假,然后对取值,可得命题的真假,最后根据真值表,可得结果.【详解】对命题:可知,所以R,故命题为假命题命题:取,可知所以R,故命题为真命题所以为真命题故选:B【点睛】本题主要考查对命题真假的判断以及真值表的应用,识记真值表,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由已知可得,结合双曲线的定义可知,结合,从而可求出离心率.【详解】解:,,又,则.,,,即解得,即.故答案为:.【点睛】本题考查了双曲线的定义,考查了双曲线的性质.本题的关键是根据几何关系,分析出.关于圆锥曲线的问题,一般如果能结合几何性质,可大大减少计算量.14、【解析】
求出双曲线的渐近线方程,求出准线方程,求出三角形的顶点的坐标,然后求解面积.【详解】解:双曲线:双曲线中,,,则双曲线的一条准线方程为,双曲线的渐近线方程为:,可得准线方程与双曲线的两条渐近线所围成的三角形的顶点的坐标,,,,则三角形的面积为.故答案为:【点睛】本题考查双曲线方程的应用,双曲线的简单性质的应用,考查计算能力,属于中档题.15、.【解析】
因为,展开后利用基本不等式,即可得到本题答案.【详解】由,得,所以,当且仅当,取等号.故答案为:【点睛】本题主要考查利用基本不等式求最值,考查学生的转化能力和运算求解能力.16、【解析】
二面角平面角为,点Q到底面的距离为,点Q到定直线得距离为d,则.再由点Q到底面的距离与到点P的距离之比为正常数k,可得,由此可得,则由可求k值.【详解】解:如图,设二面角平面角为,点Q到底面的距离为,点Q到定直线的距离为d,则,即.∵点Q到底面的距离与到点P的距离之比为正常数k,∴,则,∵动点Q的轨迹是抛物线,∴,即则.∴二面角的平面角的余弦值为解得:().故答案为:.【点睛】本题考查了四棱锥的结构特征,由四棱锥的侧面与底面的夹角求参数值,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、Ⅰ详见解析;Ⅱ①,②或.【解析】
Ⅰ可以通过已知证明出平面PAB,这样就可以证明出;Ⅱ以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,可以求出相应点的坐标,求出平面PBC的法向量为、平面PCD的法向量,利用空间向量的数量积,求出二面角的大小;求出平面PBC的法向量,利用线面角的公式求出的值.【详解】证明:Ⅰ在图1中,,,为平行四边形,,,,当沿AD折起时,,,即,,又,平面PAB,又平面PAB,.解:Ⅱ以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,由于平面ABCD则0,,0,,1,,0,,1,1,,1,,0,,设平面PBC的法向量为y,,则,取,得0,,设平面PCD的法向量b,,则,取,得1,,设二面角的大小为,可知为钝角,则,.二面角的大小为.设AM与面PBC所成角为,0,,1,,,,平面PBC的法向量0,,直线AM与平面PBC所成的角为,,解得或.【点睛】本题考查了利用线面垂直证明线线垂直,考查了利用向量数量积,求二面角的大小以及通过线面角公式求定比分点问题.18、(1)(2)证明见解析【解析】
(1)分类讨论,去绝对值求出函数的解析式,根据一次函数的性质,得出的单调性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化简后利用基本不等式求出的最小值,即可证出.【详解】(1)解:当时,单调递减;当时,单调递增.所以当时,取最小值.(2)证明:由(1)可知.要证明:,即证,因为,,为正实数,所以.当且仅当,即,,时取等号,所以.【点睛】本题考查绝对值不等式和基本不等式的应用,还运用“乘1法”和分类讨论思想,属于中档题.19、(1)证明见解析(2)【解析】
(1)连接交于点,由三角形中位线定理得,由此能证明平面.(2)以为坐标原点,的方向为轴正方向,的方向为轴正方向,的方向为轴正方向,建立空间直角坐标系.分别求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值.【详解】证明:证明:连接交于点,则为的中点.又是的中点,连接,则.因为平面,平面,所以平面.(2)由,可得:,即所以又因为直棱柱,所以以点为坐标原点,分别以直线为轴、轴、轴,建立空间直角坐标系,则,设平面的法向量为,则且,可解得,令,得平面的一个法向量为,同理可得平面的一个法向量为,则所以二面角的余弦值为.【点睛】本题主要考查直线与平面平行、二面角的概念、求法等知识,考查空间想象能力和逻辑推理能力,属于中档题.20、(1)见解析(2)不存在,见解析【解析】
(1)求出函数的导数,通过讨论的范围求出函数的单调区间即可;(2)求出函数的导数,结合导数的几何意义,再令,转化为方程有解问题,即可说明.【详解】(1)函数的定义域为,所以当时,;,所以函数在上单调递增当时,①当时,函数在上递增②,显然无增区间;③当时,,函数在上递增,综上当函数在上单调递增.当时函数在上单调递增;当时函数无单调递增区间当时函数在上单调递增(2)假设函数存在“中值相依切线”设是曲线上不同的两个点,且则曲线在点处的切线的斜率为,.令,则,单调递增,,故无解,假设不成立综上,假设不成立,所以不存在“中值相依切线”【点睛】本题考查了函数的单调性,导数的几何意义,考查导数的应用以及分类讨论和转化思想,属于中档题.21、(1)证明见解析;(2)是,理由见解析.【解析】
(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022年大学生物科学专业大学物理二开学考试试题-附解析
- 个人工作失职检讨书汇编15篇
- 个人感谢信模板合集5篇
- 北京版四年级下册数学第二单元 小数加、减法 测试卷含答案【黄金题型】
- 2022年大学环境科学专业大学物理二月考试卷C卷-附解析
- 2022年大学护理学专业大学物理下册月考试卷A卷-附解析
- 年度废旧材料回收加工竞争策略分析报告
- 年度软木及软木制品竞争策略分析报告
- 年度制药专用设备市场分析及竞争策略分析报告
- 农业大棚分布式光伏发电方案
- 易制爆化学品(剧毒品)防盗抢、防破坏应急预案
- 高职专业人才培养方案-护理专业人才培养方案
- 医学微生物学课件:支原体与衣原体
- 某幼儿园食品贮存管理制度培训
- 河南省南阳市2022-2023学年高一上学期期末语文试题
- 现代物流管理专业生涯发展展示
- 柱塞泵工作原理动画演示
- 幼儿园开展“一对一倾听”的实践与反思
- 空中乘务生涯发展
- 盐田采盐生产示范
- 科室院感自查报告
评论
0/150
提交评论