版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高级中学名校试卷PAGEPAGE1北京市顺义区2022-2023学年高二下学期期末质量监测数学试题考生须知1.本试卷总分150分,考试用时120分钟.2.本试卷共5页,分为选择题(40分)和非选择题(110分)两个部分.3.试卷所有〖答案〗必须填涂或书写在答题卡上,在试卷上作答无效.第一部分必须用2B铅笔作答:第二部分必须用黑色字迹的签字笔作答.4.考试结束后,请将答题卡交回,试卷自己保留.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合,则()A. B. C. D.〖答案〗C〖解析〗因为,所以.故选:C2.命题“”的否定是()A. B.C. D.〖答案〗B〖解析〗命题“”为全称命题,则其否定为特称命题,即,故选:B.3.“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件〖答案〗A〖解析〗因为“”能推出“”,而“”推不出“”,所以“”是“”的充分不必要条件.故选:A.4.数列是等差数列,若,则()A. B.5 C.9 D.15〖答案〗B〖解析〗因为数列为等差数列,且,所以,因为,所以,所以,所以,故选:B5.某班一天上午有4节课,下午有2节课.现要安排该班一天中语文、数学、政治、英语、体育、艺术6堂课的课程表,要求数学课排在上午,体育课排在下午,不同排法种数有()A.48种 B.96种 C.144种 D.192种〖答案〗D〖解析〗由题意,要求数学课排在上午,体育课排在下午,有种,再排其余4节,有种,根据乘法原理,共有种方法,故选:D.6.下列给出四个求导的运算:①;②;③;④.其中运算结果正确的个数是()A.1个 B.2个 C.3个 D.4个〖答案〗C〖解析〗①,故正确;②,故正确;③,故错误;④,故正确;故选:C7.在5道试题中有3道代数题和2道几何题,每次从中随机抽出1道题,抽出的题不再放回.在第1次抽到代数题的条件下,第2次抽到几何题的概率是()A. B. C. D.〖答案〗A〖解析〗设事件“第1次抽到代数题”,事件“第2次抽到几何题”,所以,则.故选:A8.已知为等比数列,下面结论中正确的是()A.若,则 B.若,则C D.〖答案〗D〖解析〗设等比数列的公式为,对于A,若,则,得,所以或,所以或,所以A错误,对于B,若,则,即,所以,则其正负由的正负确定,所以B错误,对于C,,当同正时,,当且仅当时取等号,当时,所以C错误,对于D,因为,当且仅当时取等号,所以D正确,故选:D9.设函数在上可导,其导函数为,且函数的图象如图所示,则下列结论中一定成立的是()A.当时,函数取得极大值 B.当时,函数取得极小值C当时,函数取得极大值 D.当时,函数取得极小值〖答案〗D〖解析〗由图可得,时,,单调递减,时,,单调递减,时,,单调递增,故当时,函数取得极小值,故选:D.10.某银行在1998年给出的大额存款的年利率为,某人存入元(大额存款),按照复利,10年后得到的本利和为,下列各数中与最接近的是()A.1.5 B.1.6 C.1.7 D.1.8〖答案〗B〖解析〗存入元(大额存款),按照复利,可得每年末本利和是以为首项,为公比的等比数列,所以,可得.故选:B.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.计算:________.(用数字作答)〖答案〗2〖解析〗原式.故〖答案〗为:12.函数的定义域为__________.〖答案〗〖解析〗要使有意义,只需,解得,或,所以函数的定义域为.故〖答案〗为:.13.在的展开式中,常数项为________.(用数字作答)〖答案〗〖解析〗的展开式的通项为:,取得到常数项.故〖答案〗为:.14.若幂函数在上单调递减,在上单调递增,则使是奇函数的一组整数的值依次是________.〖答案〗、3(〖答案〗不唯一)〖解析〗因为幂函数在上单调递减,在上单调递增,所以,又因为是奇函数,所以需要满足为小于的奇数,为大于的奇数.故〖答案〗为:、3(〖答案〗不唯一).15.已知,函数.给出下列四个结论:①当,函数无零点;②当时,函数恰有一个零点;③存在实数,使得函数有两个零点;④存在实数,使得函数有三个零点.其中所有正确结论的序号是________.〖答案〗①②③〖解析〗∵,∴,∴当时,;当时,,∴在上单调递减,在上单调递增,∴函数有极小值点是1,无极大值点,又当时,且极小值为,∴结合的图像得:当时,直线与的图像有两个不同交点,当时,直线与的图像有一个交点,当时,直线与的图像没有交点,当若则(舍),无零点;当若,无零点;若(舍)无零点;若则(舍),无零点;若则不妨设,有一个零点;对于①当时,函数在无零点,函数在无零点;∴①正确;对于②当时,函数在无零点,函数在恰有一个零点;∴②正确,对于③当时,函数在有两个零点,函数在无零点;∴③正确,对于④当时,函数在有两个零点,函数在无零点;∴函数有两个零点;当时,函数在有一个零点,函数在无零点;∴函数有一个零点;当或时,函数在无零点,函数在无零点;∴函数无零点;当时,函数在无零点,函数在无零点;∴函数无零点;当时,函数在无零点,函数在有一个零点;∴函数有一个零点;∴④错误,故〖答案〗为:①②③.三、解答题共6小题,共85分.解答应写出必要的文字说明、演算步骤或证明过程.16.已知.(1)求;(2)求.解:(1)令,可得(2)令,可得①令,可得②①式减②式可得,17.已知函数.(1)求曲线在点处的切线方程;(2)求函数在区间上的最大值与最小值.解:(1)函数,,又,,曲线在点处的切线方程为即;(2),令,解得或,当变化时,的变化情况如表所示:2+0-0+单调递增单调递减单调递增又时,时,,当时,在上的最大值为,当时,在上的最小值为.18.两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:组:10,11,12,13,14,15,16组:12,13,14,15,16,17,20假设所有病人的康复时间互相独立,从两组随机各选1人,组选出的人记为甲,组选出的人记为乙.(1)求甲的康复时间不多于14天的概率;(2)若康复时间大于14天,则认为康复效果不佳.设表示甲、乙2人中的康复效果不佳的人数,求的分布列及数学期望;(3)组病人康复时间的方差为组病人康复时间的方差为,试判断与的大小.(结论不要求证明)解:(1)设甲的康复时间不多于14天为事件C,组中的数据共有7个,基本事件共有7种,且相互独立又组中的数据不多于14天的有5个,即事件C中包含的基本事件有5个甲的康复时间不多于14天的概率(2)甲康复效果不佳的概率,乙康复效果不佳的概率表示甲、乙2人中的康复效果不佳的人数的可能取值是0,1,2表示甲、乙2人中的康复效果不佳的人数为0表示甲、乙2人中的康复效果不佳的人数为1表示甲、乙2人中的康复效果不佳的人数为2的分布列为012的数学期望为.(3).根据组:10,11,12,13,14,15,16,组:12,13,14,15,16,17,20组数据波动性较大,所以.19.已知为等差数列,为其前项和.若,设.(1)求证:数列是等比数列;(2)设,求数列的前项和.解:(1)设等差数列的公差为,则通项公式为,,,又,则即数列是等比数列,公比为2,首项.(2)由(1)知数列是等比数列,公比为2,首项,数列的前项和20.已知函数.(1)若对任意时,成立,求实数的最大值;(2)若,求证:;(3)若存在,使得成立,求证:.解:(1),,令解得,在单减,在上单增,在取得极小值,也是最小值,时,成立.只需即可,实数的最大值为1.(2)设,,在上单调递减,,,即.(3)法一:存在时,便得成立,,,令,由可知,由(2)知在上单调递减,,即,,即,,由知,即,.法二:,,在上单调递减,在上单调递增.存在时,使得成立,,且,令,,在上单调递增,又,,即即,在上单调递增,即.21已知整数数列满足:①;②.(1)若,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒吧岗位待遇方案
- 吉林省白城市实验高级中学2024-2025学年高三上学期11月期中地理试题( 含答案)
- 2024-2025学年江苏省无锡市江阴市南闸实验学校七年级(上)调研数学试卷(10月份)(含答案)
- 2012年5月12日下午河北省直公务员面试真题
- 人工智能公司投资计划书
- 宁夏行政职业能力2010年下半年
- 上海公务员面试模拟3
- 江西申论模拟1
- 第三章+第一节+情绪和情感概述(教案)-《幼儿心理学》(人教版第二版)
- 有关贸易合同模板23篇
- 售楼部及样板房装饰装修工程施工进度计划
- 工业硅的冶炼工艺
- Alices--adventures-in-wonderland爱丽丝梦游仙境PPT课件
- 2021年四史学习教育PPT
- 【一师一优课教案】仁爱八年级(下册)Unit 5 Topic 1 Section A
- 财务共享服务中心在企业中的应用分析——以国美电器集团为例[精选]
- 南车灌区信息化项目施工方案
- 幼儿园大班数学练习题(直接打印版)
- activemq-cpp开发手册
- 查询深沟球轴承尺寸和公差
- 城际轨道交通箱梁预制质量检查表
评论
0/150
提交评论