2022年河北省容城博奥学校数学高三第一学期期末学业质量监测试题含解析_第1页
2022年河北省容城博奥学校数学高三第一学期期末学业质量监测试题含解析_第2页
2022年河北省容城博奥学校数学高三第一学期期末学业质量监测试题含解析_第3页
2022年河北省容城博奥学校数学高三第一学期期末学业质量监测试题含解析_第4页
2022年河北省容城博奥学校数学高三第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中)有,跨接了6个坐位的宽度(),每个座位宽度为,估计弯管的长度,下面的结果中最接近真实值的是()A. B. C. D.2.设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为()A. B. C. D.3.已知偶函数在区间内单调递减,,,,则,,满足()A. B. C. D.4.蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系;用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法.现向一边长为的正方形模型内均匀投点,落入阴影部分的概率为,则圆周率()A. B.C. D.5.已知等比数列的前项和为,且满足,则的值是()A. B. C. D.6.函数与的图象上存在关于直线对称的点,则的取值范围是()A. B. C. D.7.若,则的虚部是A.3 B. C. D.8.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,则“函数有两个零点”是“”的().A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知函数的图象在点处的切线方程是,则()A.2 B.3 C.-2 D.-310.点在曲线上,过作轴垂线,设与曲线交于点,,且点的纵坐标始终为0,则称点为曲线上的“水平黄金点”,则曲线上的“水平黄金点”的个数为()A.0 B.1 C.2 D.311.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2 B.3 C. D.12.若a>b>0,0<c<1,则A.logac<logbc B.logca<logcb C.ac<bc D.ca>cb二、填空题:本题共4小题,每小题5分,共20分。13.已知复数z是纯虚数,则实数a=_____,|z|=_____.14.展开式中的系数的和大于8而小于32,则______.15.平面向量,,(R),且与的夹角等于与的夹角,则.16.在的二项展开式中,所有项的二项式系数之和为256,则_______,项的系数等于________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若,解关于的不等式;(2)若当时,恒成立,求实数的取值范围.18.(12分)函数,且恒成立.(1)求实数的集合;(2)当时,判断图象与图象的交点个数,并证明.(参考数据:)19.(12分)己知等差数列的公差,,且,,成等比数列.(1)求使不等式成立的最大自然数n;(2)记数列的前n项和为,求证:.20.(12分)如图,四棱锥中,四边形是矩形,,,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面;(2)求几何体的体积.21.(12分)数列满足,,其前n项和为,数列的前n项积为.(1)求和数列的通项公式;(2)设,求的前n项和,并证明:对任意的正整数m、k,均有.22.(10分)如图(1)五边形中,,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.(1)求证:平面平面;(2)若直线与所成角的正切值为,求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

为弯管,为6个座位的宽度,利用勾股定理求出弧所在圆的半径为,从而可得弧所对的圆心角,再利用弧长公式即可求解.【详解】如图所示,为弯管,为6个座位的宽度,则设弧所在圆的半径为,则解得可以近似地认为,即于是,长所以是最接近的,其中选项A的长度比还小,不可能,因此只能选B,260或者由,所以弧长.故选:B【点睛】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题.2、B【解析】

由圆过原点,知中有一点与原点重合,作出图形,由,,得,从而直线倾斜角为,写出点坐标,代入抛物线方程求出参数,可得点坐标,从而得三角形面积.【详解】由题意圆过原点,所以原点是圆与抛物线的一个交点,不妨设为,如图,由于,,∴,∴,,∴点坐标为,代入抛物线方程得,,∴,.故选:B.【点睛】本题考查抛物线与圆相交问题,解题关键是发现原点是其中一个交点,从而是等腰直角三角形,于是可得点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解.3、D【解析】

首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小【详解】因为偶函数在减,所以在上增,,,,∴.故选:D【点睛】本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题.4、A【解析】

计算出黑色部分的面积与总面积的比,即可得解.【详解】由,∴.故选:A【点睛】本题考查了面积型几何概型的概率的计算,属于基础题.5、C【解析】

利用先求出,然后计算出结果.【详解】根据题意,当时,,,故当时,,数列是等比数列,则,故,解得,故选.【点睛】本题主要考查了等比数列前项和的表达形式,只要求出数列中的项即可得到结果,较为基础.6、C【解析】

由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.【详解】解:由题可知,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满足条件.故选:C.【点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题.7、B【解析】

因为,所以的虚部是.故选B.8、A【解析】

作出函数的图象,得到,把函数有零点转化为与在(2,4]上有交点,利用导数求出切线斜率,即可求得的取值范围,再根据充分、必要条件的定义即可判断.【详解】作出函数的图象如图,由图可知,,函数有2个零点,即有两个不同的根,也就是与在上有2个交点,则的最小值为;设过原点的直线与的切点为,斜率为,则切线方程为,把代入,可得,即,∴切线斜率为,∴k的取值范围是,∴函数有两个零点”是“”的充分不必要条件,故选A.【点睛】本题主要考查了函数零点的判定,考查数学转化思想方法与数形结合的解题思想方法,训练了利用导数研究过曲线上某点处的切线方程,试题有一定的综合性,属于中档题.9、B【解析】

根据求出再根据也在直线上,求出b的值,即得解.【详解】因为,所以所以,又也在直线上,所以,解得所以.故选:B【点睛】本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平.10、C【解析】

设,则,则,即可得,设,利用导函数判断的零点的个数,即为所求.【详解】设,则,所以,依题意可得,设,则,当时,,则单调递减;当时,,则单调递增,所以,且,有两个不同的解,所以曲线上的“水平黄金点”的个数为2.故选:C【点睛】本题考查利用导函数处理零点问题,考查向量的坐标运算,考查零点存在性定理的应用.11、D【解析】

本题首先可以通过题意画出图像并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果。【详解】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,,即,,因为圆的半径为,是圆的半径,所以,因为,,,,所以,三角形是直角三角形,因为,所以,,即点纵坐标为,将点纵坐标带入圆的方程中可得,解得,,将点坐标带入双曲线中可得,化简得,,,,故选D。【点睛】本题考查了圆锥曲线的相关性质,主要考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题。12、B【解析】试题分析:对于选项A,,,,而,所以,但不能确定的正负,所以它们的大小不能确定;对于选项B,,,两边同乘以一个负数改变不等号方向,所以选项B正确;对于选项C,利用在第一象限内是增函数即可得到,所以C错误;对于选项D,利用在上为减函数易得,所以D错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.二、填空题:本题共4小题,每小题5分,共20分。13、11【解析】

根据复数运算法则计算复数z,根据复数的概念和模长公式计算得解.【详解】复数z,∵复数z是纯虚数,∴,解得a=1,∴z=i,∴|z|=1,故答案为:1,1.【点睛】此题考查复数的概念和模长计算,根据复数是纯虚数建立方程求解,计算模长,关键在于熟练掌握复数的运算法则.14、4【解析】

由题意可得项的系数与二项式系数是相等的,利用题意,得出不等式组,求得结果.【详解】观察式子可知,,故答案为:4.【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有展开式中项的系数和,属于基础题目.15、2【解析】试题分析:,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角16、81【解析】

根据二项式系数和的性质可得n,再利用展开式的通项公式求含项的系数即可.【详解】由于所有项的二项式系数之和为,,故的二项展开式的通项公式为,令,求得,可得含x项的系数等于,故答案为:8;1.【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)利用零点分段法将表示为分段函数的形式,由此求得不等式的解集.(2)对分成三种情况,求得的最小值,由此求得的取值范围.【详解】(1)当时,,由此可知,的解集为(2)当时,的最小值为和中的最小值,其中,.所以恒成立.当时,,且,不恒成立,不符合题意.当时,,若,则,故不恒成立,不符合题意;若,则,故不恒成立,不符合题意.综上,.【点睛】本小题主要考查绝对值不等式的解法,考查根据绝对值不等式恒成立求参数的取值范围,考查分类讨论的数学思想方法,属于中档题.18、(1);(2)2个,证明见解析【解析】

(1)要恒成立,只要的最小值大于或等于零即可,所以只要讨论求解看是否有最小值;(2)将图像与图像的交点个数转化为方程实数解的个数问题,然后构造函数,再利用导数讨论此函数零点的个数.【详解】(1)的定义域为,因为,1°当时,在上单调递减,时,使得,与条件矛盾;2°当时,由,得;由,得,所以在上单调递减,在上单调递增,即有,由恒成立,所以恒成立,令,若;若;而时,,要使恒成立,故.(2)原问题转化为方程实根个数问题,当时,图象与图象有且仅有2个交点,理由如下:由,即,令,因为,所以是的一根;,1°当时,,所以在上单调递减,,即在上无实根;2°当时,,则在上单调递递增,又,所以在上有唯一实根,且满足,①当时,在上单调递减,此时在上无实根;②当时,在上单调递增,,故在上有唯一实根.3°当时,由(1)知,在上单调递增,所以,故,所以在上无实根.综合1°,2°,3°,故有两个实根,即图象与图象有且仅有2个交点.【点睛】此题考查不等式恒成立问题、函数与方程的转化思想,考查导数的运用,属于较难题.19、(1);(2)证明见解析【解析】

(1)根据,,成等比数列,有,结合公差,,求得通项,再解不等式.(2)根据(1),用裂项相消法求和,然后研究其单调性即可.【详解】(1)由题意,可知,即,∴.又,,∴,∴.∴,∴,故满足题意的最大自然数为.(2),∴...从而当时,单调递增,且,当时,单调递增,且,所以,由,知不等式成立.【点睛】本题主要考查等差数列的基本运算和裂项相消法求和,还考查了运算求解的能力,属于中档题.20、(1)见解析;(2)【解析】

(1)由题可知,根据三角形的中位线的性质,得出,根据矩形的性质得出,所以,再利用线面平行的判定定理即可证出平面;(2)由于平面平面,根据面面垂直的性质,得出平面,从而得出到平面的距离为,结合棱锥的体积公式,即可求得结果.【详解】解:(1)∵,分别为,的中点,∴,∵四边形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中点,,连接,,,,则,由于为三棱柱,为四棱锥,∵平面平面,∴平面,由已知可求得,∴到平面的距离为,因为四边形是矩形,,,,设几何体的体积为,则,∴,即:.【点睛】本题考查线面平行的判定、面面垂直的性质和棱锥的体积公式,考查逻辑推理和计算能力.21、(1),;(2),证明见解析【解析】

(1)利用已知条件建立等量关系求出数列的通

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论