版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中有一个3×3的正方形网格,其右下角格点(小正方形的顶点)A的坐标为(﹣1,1),左上角格点B的坐标为(﹣4,4),若分布在过定点(﹣1,0)的直线y=﹣k(x+1)两侧的格点数相同,则k的取值可以是()A. B. C.2 D.2.已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=x﹣k的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.现有甲,乙两个工程队分别同时开挖两条600m长的隧道,所挖遂道长度y(m)与挖掘时间x(天)之间的函数关系如图所示.则下列说法中,错误的是()A.甲队每天挖100mB.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当时,甲、乙两队所挖管道长度相同4.甲、乙、丙、丁4个人步行路程和花费时间如图所示,按平均值计算,则走得最慢的是()A.甲 B.乙 C.丙 D.丁5.下列命题是假命题的是()A.平方根等于本身的实数只有0; B.两直线平行,内错角相等;C.点P(2,-5)到x轴的距离为5; D.数轴上没有点表示π这个无理数.6.如图,矩形的对角线与相交于点分别为的中点,,则对角线的长等于()A. B. C. D.7.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为(
)A.﹣2
B.2
C.0
D.18.如图,四边形绕点顺时针方向旋转得到四边形,下列说法正确的是()A.旋转角是 B.C.若连接,则 D.四边形和四边形可能不全等9.如图,,要说明,需添加的条件不能是()A. B. C. D.10.若直线与的交点在x轴上,那么等于A.4 B. C. D.11.下面的图形中对称轴最多的是()A. B.C. D.12.下列各式中,是最简二次根式的是()A. B. C. D.二、填空题(每题4分,共24分)13.三角形两边长分别是2,4,第三边长为偶数,第三边长为_______14.将点M(﹣5,m)向上平移6个单位得到的点与点M关于x轴对称,则m的值为_____.15.分解因式:=________.16.若正比例函数y=kx的图象经过点(2,4),则k=_____.17.在△ABC中,∠ACB=90°,若AC=5,AB=13,则BC=___.18.如图,已知△ABC是等边三角形,分别在AC、BC上取点E、F,且AE=CF,BE、AF交于点D,则∠BDF=______.三、解答题(共78分)19.(8分)如图,已知点,,,在一条直线上,且,,,求证:.20.(8分)(1)解方程:﹔(2)已知,,求代数式的值.21.(8分)一次函数的图象过M(6,﹣1),N(﹣4,9)两点.(1)求函数的表达式.(2)当y<1时,求自变量x的取值范围.22.(10分)先化简,再求值:,其中23.(10分)如图,三个顶点的坐标分别为A(-2,2),,.(1)画出关于轴对称的;(2)在轴上画出点,使最小.并直接写出点的坐标.24.(10分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2015年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)实际每年绿化面积为多少万平方米?(2)为加大创建力度,市政府决定从2018年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?25.(12分)因式分解:(1)﹣3x3y2+6x2y3﹣3xy4(2)9a2(x﹣y)+4b2(y﹣x)26.(1)计算:(2x﹣3)(﹣2x﹣3)(2)计算:1022
参考答案一、选择题(每题4分,共48分)1、B【分析】由直线解析式可知:该直线过定点(﹣1,0),画出图形,由图可知:在直线CD和直线CE之间,两侧格点相同,再根据E、D两点坐标求k的取值【详解】解:∵直线y=﹣k(x+1)过定点(﹣1,0),分布在直线y=﹣k(x+1)两侧的格点数相同,由正方形的对称性可知,直线y=﹣k(x+1)两侧的格点数相同,∴在直线CD和直线CE之间,两侧格点相同,(如图)∵E(﹣3,3),D(﹣3,4),∴﹣1<﹣k<﹣,则<k<1.故选B.【点睛】此题考查的是一次函数与图形问题,根据一次函数的图像与点的坐标的位置关系求k的取值是解决此题的关键.2、D【分析】利用正比例函数的性质可得出k<1,再利用一次函数图象与系数的关系可得出一次函数y=x﹣k的图象经过第一、二、三象限,进而可得出一次函数y=x﹣k的图象不经过第四象限.【详解】解:∵正比例函数y=kx的函数值y随x的增大而减小,∴k<1.∵1>1,﹣k>1,∴一次函数y=x﹣k的图象经过第一、二、三象限,∴一次函数y=x﹣k的图象不经过第四象限.故选:D.【点睛】本题考查了一次函数图象与系数的关系以及正比例函数的性质,牢记“,的图象在一、二、三象限”是解题的关键.3、D【分析】从图象可以看出甲队完成工程的时间不到6天,故工作效率为100米,乙队挖2天后还剩300米,4天完成了200米,故每天是50米,当x=4时,甲队完成400米,乙队完成400米,甲队完成所用时间是6天,乙队是8天,通过以上的计算就可以得出结论.【详解】解:由图象,得600÷6=100米/天,故A正确;(500-300)÷4=50米/天,故B正确;由图象得甲队完成600米的时间是6天,乙队完成600米的时间是:2+300÷50=8天,∵8-6=2天,∴甲队比乙队提前2天完成任务,故C正确;当x=3时,甲队所挖管道长度=3×100=300米,乙队所挖管道长度=300+(3-2)×50=350米,故D错误;故选:D.【点睛】本题考查了一次函数的应用,施工距离、速度、时间三者之间的关系的运用,但难度不大,读懂图象信息是解题的关键.4、B【分析】根据图中提供的数据分别求出甲、乙、丙、丁4个人的速度,再比较大小即可.【详解】解:由图可知,甲的速度为:1÷20=0.05(千米/分),乙的速度为:1÷40=0.025(千米/分),丙的速度为:3÷30=0.1(千米/分),丁的速度为4÷30=(千米/分),∵,∴乙的速度最慢,故选B.【点睛】本题主要是对时间路程图的考查,准确根据题意求出速度是解决本题的关键.5、D【分析】根据平方根的定义可判断A,根据平行线的性质,可判断B,根据坐标系中,点与坐标轴的距离,可判断C,根据数轴上的点与实数一一对应,可判断D.【详解】A.平方根等于本身的实数只有0,是真命题,不符合题意;B.两直线平行,内错角相等,是真命题,不符合题意;C.点P(2,-5)到x轴的距离为5,是真命题,不符合题意;D.∵数轴上的点与实数一一对应,∴数轴上有点表示π这个无理数,故原命题是假命题,符合题意.故选D.【点睛】本题主要考查真假命题的判断,熟练掌握平方根的定义,平行线的性质,坐标系中点与坐标轴的距离以及数轴上点表示的数,是解题的关键.6、C【分析】根据中位线的性质可得OD=2PQ=5,再根据矩形对角线互相平分且相等,可得AC=BD=2OD=1.【详解】∵P,Q分别为AO,AD的中点,∴PQ是△AOD的中位线∴OD=2PQ=5∵四边形ABCD为矩形∴AC=BD=2OD=1.故选C.【点睛】本题考查了三角形中位线,矩形的性质,熟记三角形的中位线等于第三边的一半,矩形对角线互相平分且相等是解题的关键.7、B【解析】根据题意得:(x+m)(2−x)=2x−x2+2m−mx,∵x+m与2−x的乘积中不含x的一次项,∴m=2;故选B.8、C【分析】根据旋转的旋转及特点即可依次判断.【详解】旋转角是或,故A错误;,故B错误;若连接,即对应点与旋转中心的连接的线段,故则,C正确;四边形和四边形一定全等,故D错误;故选C.【点睛】此题主要考查旋转的性质,解题的关键是熟知旋转的特点与性质.9、D【分析】根据全等三角形的判定定理判断即可.【详解】A、在△ABC和△DCB中∴△ABC≌△DCB,故本选项正确;B、在△ABC和△DCB中∴△ABC≌△DCB,故本选项正确;C、∵∴在△ABC和△DCB中∴△ABC≌△DCB,故本选项正确;D、根据两边和其中一边的对角不能判断两三角形全等;故本选项错误;故选:D.【点睛】本题主要考查对全等三角形的判定的理解和掌握,能熟练地根据等腰三角形的性质及全等三角形的判定定理进行证明是解此题的关键.10、D【解析】分别求出两直线与x轴的交点的横坐标,然后列出方程整理即可得解.【详解】解:令,则,
解得,
,
解得,
两直线交点在x轴上,
,
.
故选:D.
【点睛】考查了两直线相交的问题,分别表示出两直线与x轴的交点的横坐标是解题的关键.11、B【分析】分别得出各选项对称轴的条数,进而得出答案.【详解】A、有1条对称轴;
B、有4条对称轴;
C、有1条对称轴;
D、有2条对称轴;
综上可得:对称轴最多的是选项B.
故选:B.【点睛】本题主要考查了轴对称变换,正确得出每个图形的对称轴是解题关键.12、A【分析】根据最简二次根式的定义判断即可.需要符合以下两个条件:
1.被开方数中不含能开得尽方的因数或因式;2.被开方数的因数是整数,因式是整式.【详解】解:A.不能继续化简,故正确;B.,故错误;C.,故错误;D.故错误.故选:A.【点睛】本题考查最简二次根式的定义,理解掌握定义是解答关键.二、填空题(每题4分,共24分)13、2【解析】试题解析:设第三边为a,根据三角形的三边关系知,2-1<a<2+1.即1<a<6,由周长为偶数,则a为2.14、-1.【分析】直接利用平移的性质得出平移后点的坐标,再利用关于x轴对称点的性质得出答案.【详解】解:∵点M(﹣5,m)向上平移6个单位长度,∴平移后的点的坐标为:(﹣5,m+6),∵点M(﹣5,m)向上平移6个单位长度后所得到的点与点M关于x轴对称,∴m+m+6=0,解得:m=﹣1.故答案为:﹣1.【点睛】本题考查了平移的问题,掌握平移的性质以及关于x轴对称点的性质是解题的关键.15、【分析】根据提公因式法即可求解.【详解】=故答案为:.【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.16、2【解析】17、1【分析】根据勾股定理求解即可.【详解】由勾股定理得:.故答案为:1.【点睛】本题主要考查了勾股定理的运用,熟练掌握相关概念是解题的关键.18、60°.【解析】试题分析:∵△ABC是等边三角形,∴∠BAC=∠ABC=∠C=60°,AB=AC,又∵AE=CF,∴△ABE≌△ACF(SAS),∴∠ABE=∠CAF,∴∠BDF=∠BAD+∠ABE=∠BAD+∠CAF=∠BAC=60°.考点:1.等边三角形的性质;2.全等三角形的性质和判定;3.三角形的外角的性质.三、解答题(共78分)19、证明见解析【解析】应用三角形全等的判定定理(SSS)进行证明.【详解】,,即,在和中,,,.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练掌握全等三角形的判定方法并具有审题的能力.20、(1);(2)18【分析】(1)根据分式方程的解法直接进行求解即可;(2)先对整式进行因式分解,然后整体代入求解即可.【详解】解:(1)去分母得:,整理解得:;经检验是原方程的解;(2)=,把,代入求解得:原式=.【点睛】本题主要考查分式方程及因式分解,熟练掌握各个运算方法是解题的关键.21、(1)y=﹣x+2;(2)当y<1时,x>1.【分析】(1)采用待定系数法,求解即可;(2)根据函数的增减性,即可得解.【详解】(1)设一次函数的解析式为y=kx+b将M(6,﹣1),N(﹣1,9)代入得:解得∴函数的表达式y=﹣x+2.(2)∵k=﹣1<0∴一次函数y=﹣x+2的函数值随着x的增大而变小∵当y=1时,1=﹣x+2∴x=1∴当y<1时,x>1.【点睛】此题主要考查一次函数解析式以及自变量范围的求解,熟练掌握,即可解题.22、,2020【分析】先根据完全平方公式、平方差公式展开,再合并,然后计算除法,最后把m,n的值代入计算即可.【详解】,;当,时,原式=.【点睛】本题考查的是整式的化简求值,解题的关键是注意公式的使用,以及合并同类项.23、(1)见解析;(2)见解析,Q(0,0).【分析】(1)利用关于y轴对称的点的坐标特征得出A、B、C的对应点A1、B1、C1的位置,然后顺次连接即可;(2)连接AC1交y轴于Q点,利用两点之间线段最短可确定此时QA+QC的值最小,然后根据坐标系可写出点Q的坐标.【详解】解:(1)如图,△A1B1C1为所求.(2)如图,Q(0,0).【点睛】本题考查了作图—轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.24、(1)实际每年绿化面积为54万平方米;(2)实际平均每年绿化面积至少还要增加1万平方米.【分析】(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年化围栏施工协议范例
- 2024年门面房使用权转租协议样式
- DB11∕T 1708-2019 施工工地扬尘视频监控和数据传输技术规范
- 2024年度酒店早餐外判协议示例
- 2024城区鼠害防治协议范本
- 2024年企业员工劳动协议条款细则
- 文书模板-《校企学生三方协议书》
- 2024砼业班组劳务承揽协议
- 2024年智能家电销售协议模板
- 2024年建筑工程信息保护协议
- 2022年医院文书档案保管期限
- 压力容器焊接工艺
- 托管教师备课系统(课堂PPT)
- 拐杖的使用ppt课件
- 2005年河北高考一分一档表
- 门窗工程项目特征描述情况
- 农村污水管网设计说明(共18页)
- 化工设备机械基础重点知识点
- 餐饮铺台布技能铺台布教学课件
- 小学五年级上册数学计算题
- 聚乙烯安全技术说明书
评论
0/150
提交评论