版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.菱形的一个内角是60°,边长是,则这个菱形的较短的对角线长是()A. B. C. D.2.如图,将矩形(长方形)ABCD沿EF折叠,使点B与点D重合,点A落在G处,连接BE,DF,则下列结论:①DE=DF,②FB=FE,③BE=DF,④B、E、G三点在同一直线上,其中正确的是()A.①②③ B.①③④ C.②③④ D.①②④3.下列计算正确的是()A. B.(x+2)(x—2)=x—2 C.(a+b)=a+b D.(-2a)=4a4.下列四个图形中,与图1中的图形全等的是()A. B. C. D.5.下列因式分解正确的是()A. B.C. D.6.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为()A.30° B.34° C.36° D.40°7.如果是方程ax+(a-2)y=0的一组解,则a的值是()A.1 B.-1 C.2 D.-28.由下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.AB:BC:AC=3:4:5C.∠A+∠B=∠C D.AB2=BC2+AC29.下列整式的运算中,正确的是()A. B.C. D.10.9的算术平方根是()A.3 B. C.±3 D.±11.下列算式中,结果与相等的是()A. B. C. D.12.△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5 B.a=4,b=5,c=6C.a=6,b=8,c=10 D.a=5,b=12,c=13二、填空题(每题4分,共24分)13.如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC的角分线.若在边AB上截取BE=BC,连接DE,则图中共有_________个等腰三角形.14.在平面直角坐标系中,A(1,0),B(0,2),C(-4,2),若以A,B,C,D为顶点的四边形是平行四边形,则点D的坐标为________________.15.若正多边形的每一个内角为,则这个正多边形的边数是__________.16.已知等腰三角形的底角为15°,腰长为30cm,则此等腰三角形的面积为_____.17.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB=.18.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.三、解答题(共78分)19.(8分)已知△ABN和△ACM的位置如图所示,∠1=∠2,AB=AC,AM=AN,求证:∠M=∠N.20.(8分)先化简,再求值:,其中.21.(8分)先化简,再求值,其中.22.(10分)先化简再求值:若,且,求的值.23.(10分)已知△.(1)在图中用直尺和圆规作出的平分线和边的垂直平分线交于点(保留作图痕迹,不写作法).(2)在(1)的条件下,若点、分别是边和上的点,且,连接求证:;(3)如图,在(1)的条件下,点、分别是、边上的点,且△的周长等于边的长,试探究与的数量关系,并说明理由.24.(10分)如图,△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于F,交BC于E,点G为AB的中点,连接DG,交AE于点H,(1)求∠ACB的度数;(2)HE=AF25.(12分)计算下列各小题(1)(2)26.如图,在△ABC中,∠A>∠B.分别以点A、B为圆心,以大于的长为半径画弧,过两弧的交点的直线与AB,BC分别相交于点D,E,连接AE,若∠B=50°,求∠AEC的度数.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据菱形的性质以及已知条件可得,较短的对角线与菱形的一组邻边组成一个等边三角形,从而得到较短的对角线等于其边长.【详解】菱形的一个内角是60°,根据菱形的性质可知,60°角所对的对角线与菱形的两边构成的三角形是一个等边三角形,故这个菱形较短的对角线长5cm.选B.【点睛】本题考查了菱形的性质以及等边三角形的性质,从而确定较短的对角线来求解.2、B【分析】由折叠的性质得出∠G=∠A,BE=DE,BF=DF,∠BEF=∠DEF,AE=GE,证出∠BEF=∠BFE,证出BE=BF,得出DE=DF,BE=DF=DE,①③正确,②不正确;证明Rt△ABE≌Rt△GDE(HL),得出∠AEB=∠GED,证出∠GED+∠BED=180°,得出B,E,G三点在同一直线上,④正确即可.【详解】∵矩形ABCD沿EF折叠,使点B与点D重合,
∴∠G=∠A,BE=DE,BF=DF,∠BEF=∠DEF,AE=GE,
∵四边形ABCD是矩形,
∴∠G=∠A=90°,AD∥BC,
∴∠DEF=∠BFE,
∴∠BEF=∠BFE,
∴BE=BF,
∴DE=DF,BE=DF=DE,
∴①③正确,②不正确;
在Rt△ABE和Rt△GDE中,,
∴Rt△ABE≌Rt△GDE(HL),
∴∠AEB=∠GED,
∵∠AEB+∠BED=180°,
∴∠GED+∠BED=180°,
∴B,E,G三点在同一直线上,④正确;
故选:B.【点睛】此题考查翻折变换的性质、矩形的性质、等腰三角形的判定、全等三角形的判定与性质,熟练掌握翻折变换的性质,证明BE=BF是解题的关键.3、D【解析】分别根据同底数幂乘法、积的乘方、平方差公式、完全平方公式,对各选项计算后利用排除法求解.【详解】解:A.,故A选项不正确;B.(x+2)(x—2)=x-4,故B选项不正确;C.(a+b)=a+b+2ab,故C选项不正确;D.(-2a)=4a,故D选项正确.故选:D【点睛】本题考查了整式乘法,熟练掌握运算性质是解题的关键.4、C【分析】直接利用全等形的定义解答即可.【详解】解:只有C选项与图1形状、大小都相同.故答案为C.【点睛】本题主要考查了全等形的定义,形状、大小都相同图形为全等形.5、C【分析】分别利用公式法和提公因式法对各选项进行判断即可.【详解】解:A.无法分解因式,故此选项错误;B.,故此选项错误;C.,故此选项正确;D.,故此选项错误.故选:C.【点睛】本题主要考查了公式法以及提取公因式法分解因式,一个多项式如有公因式首先提取公因式,然后再用公式法进行因式分解.如果剩余的是两项,考虑使用平方差公式,如果剩余的是三项,则考虑使用完全平方公式.同时,因式分解要彻底,要分解到不能分解为止.6、B【解析】由AB=BD,∠B=40°得到∠ADB=70°,再根据三角形的外角的性质即可得到结论.【详解】解:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选:B.【点睛】本题考查了等腰三角形的性质,三角形外角的性质,熟练掌握等腰三角形的两个底角相等和三角形的外角等于不相邻两个内角的和是解答本题的关键.7、B【解析】将代入方程ax+(a−2)y=0得:−3a+a−2=0.解得:a=−1.故选B.8、A【分析】直角三角形的判定:有一个角是直角的三角形,两个锐角互余,满足勾股定理的逆定理。用这三个,便可找到答案.【详解】解:A、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,可求得∠C≠90°,故△ABC不是直角三角形;B、不妨设AB=3x,BC=4x,AC=5x,此时AB2+BC2=25x2=AC2,故△ABC是直角三角形;C、∠A+∠B=∠C,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC是直角三角形;D、AB2=BC2+AC2,满足勾股定理的逆定理,故△ABC是直角三角形;故选:A.【点睛】知道直角三角形判定的方法(直角三角形的判定:有一个角是直角的三角形,两个锐角互余,满足勾股定理的逆定理),会在具体当中应用.9、D【分析】根据同底数幂的乘法,积的乘方,幂的乘方逐一判断即可.【详解】解:A、,故A错误;B、,故B错误;C、与不是同类项,不能合并,故C错误;D、,正确,故答案为:D.【点睛】本题考查了底数幂的乘法,积的乘方,幂的乘方,解题的关键是掌握幂的运算法则.10、A【分析】根据算术平方根的定义即可得到结果.【详解】解:∵32=9∴9的算术平方根是3,故选:A.【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.11、C【分析】已知,然后对A、B、C、D四个选项进行运算,A根据合并同类项的法则进行计算即可;B根据同底数幂的乘法法则进行计算即可;C根据幂的乘方法则进行计算即可;D根据同底数幂除法法则进行计算即可.【详解】∵A.,不符合题意B.,不符合题意C.,符合题意D.,不符合题意故C正确故选:C【点睛】本题考查了合并同类项的法则、同底数幂的乘法法则、幂的乘方法则、同底数幂除法法则.12、B【解析】根据勾股定理进行判断即可得到答案.【详解】A.∵32+42=52,∴△ABC是直角三角形;B.∵52+42≠62,∴△ABC不是直角三角形;C.∵62+82=102,∴△ABC是直角三角形;D.∵122+42=132,∴△ABC是直角三角形;故选:B.【点睛】本题考查勾股定理的应用,解题的关键是掌握勾股定理.二、填空题(每题4分,共24分)13、1.【解析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【详解】∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°−∠DBC−∠C=180°−36°−72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°−36°)÷2=72°,∴∠ADE=∠BED−∠A=72°−36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有1个.故答案为1.考点:等腰三角形的判定14、(-3,0)或(5,0)或(-5,4)【解析】根据题意画出符合条件的三种情况,根据图形结合平行四边形的性质、A、B、C的坐标求出即可.【详解】解:
如图有三种情况:①平行四边形AD1CB,
∵A(1,0),B(
0,2),C(-4,2),
∴AD1=BC=4,OD1=3,
则D的坐标是(-3,0);
②平行四边形AD2BC,
∵A(1,0),B(
0,2),C(-4,2),
∴AD2=BC=4,OD2=1+4=5,
则D的坐标是(5,0);
③平行四边形ACD3B,
∵A(1,0),B(
0,2),C(-4,2),
∴D3的纵坐标是2+2=4,横坐标是-(4+1)=-5,
则D的坐标是(-5,4),
故答案为(-3,0)或(5,0)或(-5,4).【点睛】本题考查了坐标与图形性质,平行四边形的性质等知识点,解题的关键是掌握①数形结合思想的运用,②分类讨论方法的运用.15、八(或8)【解析】分析:根据正多边形的每一个内角为,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.详解:根据正多边形的每一个内角为,正多边形的每一个外角为:多边形的边数为:故答案为八.点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.16、115cm1.【解析】根据题意作出图形,求出腰上的高,再代入面积公式即可求解.【详解】解:如图所示,作等腰三角形腰上的高CD,∵∠B=∠ACB=15°,
∴∠CAD=30°,
∴CD=AC=×30=15cm,
∴此等腰三角形的面积=×30×15=115cm1,
故答案为:115cm1.【点睛】本题考查的是含30度角的直角三角形的性质、等腰三角形的性质以及三角形外角的性质,熟练运用相关性质定理是解题的关键.17、85°.【解析】试题分析:令A→南的方向为线段AE,B→北的方向为线段BD,根据题意可知,AE,DB是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角.2、三角形内角和.18、.【分析】过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.通过证明△ABM≌△ACE(SAS)推知全等三角形的对应边AM=AE、对应角∠BAM=∠CAE;然后由等腰直角三角形的性质和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的对应边MN=EN;最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2.【详解】解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=2,CN=3,∴MN2=22+32,∴MN=考点:2.正方形的性质;2.全等三角形的判定与性质.三、解答题(共78分)19、见解析【分析】证出∠BAN=∠CAM,由AB=AC,AM=AN证明△ACM≌△ABN,得出对应角相等即可.【详解】∵∠1=∠2,∴∠BAN=∠CAM,AB=AC,AM=AN,∴△ABN≌△ACM,∴∠M=∠N.【点睛】本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.20、,1【分析】先根据完全平方公式、平方差公式和单项式乘多项式法则化简原式,再将x的值代入计算可得.【详解】解:当x=-2时,原式=24-1=1.【点睛】本题主要考查整式的混合运算-化简求值,解题的关键是掌握完全平方公式、平方差公式和单项式乘多项式法则.21、;【分析】根据分式的运算法则即可化简,再代入即可求解.【详解】===把代入原式=【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式的运算法则.22、10【分析】将原式化简得到最简结果,再将x=10+y代入即可.【详解】解:原式==∵,∴,代入得:原式=10.【点睛】本题考查了分式的化简求值,已知字母的关系式求分式的值,注意题中整体思想的运用.23、(1)见解析;(2)见解析;(3)与的数量关系是,理由见解析.【分析】(1)利用基本作图作∠ABC的平分线;利用基本作图作BC的垂直平分线,即可完成;
(2)如图,设BC的垂直平分线交BC于G,作OH⊥AB于H,用角平分线的性质证明OH=OG,BH=BG,继而证明EH=DG,然后可证明,于是可得到OE=OD;(3)作OH⊥AB于H,OG⊥CB于G,在CB上取CD=BE,利用(2)得到CD=BE,,OE=OD,,,可证明,故有,由△的周长=BC可得到DF=EF,于是可证明,所以有,然后可得到与的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC的垂直平分线交BC于G,作OH⊥AB于H,∵BO平分∠ABC,OH⊥AB,OG垂直平分BC,
∴OH=OG,CG=BG,∵OB=OB,∴,
∴BH=BG,
∵BE=CD,
∴EH=BH-BE=BG-CD=CG-CD=DG,在和中,,∴,
∴OE=OD.(3)与的数量关系是,理由如下;如图,作OH⊥AB于H,OG⊥CB于G,在CB上取CD=BE,由(2)可知,因为CD=BE,所以且OE=OD,∴,,∴,∴,∵△的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△和△中,,∴,
∴,∴,∴.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.24、(1)67.5°.(2)证明见解析.【分析】(1)利用等边对等角可证:∠ACB=∠ABC,根据三角形内角和定理可以求出∠ACB的度数;(2)连接HB,根据垂直平分线的性质可证AE⊥BC,BE=CE,再根据ASA可证:Rt△BDC≌Rt△ADF,根据全等三角形的性质可证:BC=AF,从而可以求出HE=BE=B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地下排水建设项目材料买卖协议典范
- 2024技术顾问服务协议系列篇
- 2024企业债务融资协议模板
- 2024届安徽凤台一中高三3月教学质量检测试题数学试题理试题
- 2024槽棎施工质量保障协议范本
- 2024年房产开发融资居间协议模板
- 2024建筑外保温服务协议样式
- 2024年商业交易货样协议模板
- 2024年度美容院加盟协议示例
- 2024全职员工派遣协议范本
- 马原辨析题题库
- ev3产品介绍(颈动脉)
- 表格式教学设计方案模板举例
- 720--消防自动喷水灭火系统(干式)讲解
- 卢森宝亚压缩空气泡沫系统
- AQL抽样检验表(标准版本2(1).0)
- 桶装水领用登记表
- 安阳师范学院校级教学团队推荐表
- 企业中层管理人员素质测评(附答案)
- 《新概念英语》第二册(电子版)
- 活性焦过滤吸附法污水深处理技术
评论
0/150
提交评论