版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.若抛物线y=x2+ax+b与x轴两个交点间的距离为4,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线x=2,将此抛物线向左平移2个单位,再向上平移3个单位,得到的抛物线过点()A.(1,0) B.(1,8) C.(1,﹣1) D.(1,﹣6)2.如图,AD是半圆O的直径,AD=12,B,C是半圆O上两点.若,则图中阴影部分的面积是()A.6π B.12π C.18π D.24π3.一元二次方程的两根之和为()A. B.2 C. D.34.将一元二次方程化成一般式后,二次项系数和一次项系数分别为()A.4,3 B.4,7 C.4,-3 D.5.下列四种图案中,不是中心对称图形的为()A. B. C. D.6.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°7.如图,将图形用放大镜放大,这种图形的变化属于()A.平移 B.相似 C.旋转 D.对称8.将二次函数y=ax2的图象先向下平移2个单位,再向右平移3个单位,截x轴所得的线段长为4,则a=()A.1 B. C. D.9.如图,在菱形中,,,是的中点,将绕点逆时针旋转至点与点重合,此时点旋转至处,则点在旋转过程中形成的、线段、点在旋转过程中形成的与线段所围成的阴影部分的面积为()A. B. C. D.10.平面直角坐标系中,抛物线经变换后得到抛物线,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向左平移4个单位 D.向右平移4个单位二、填空题(每小题3分,共24分)11.如图,是的内接三角形,,的长是,则的半径是__________.12.如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=_____.13.关于的方程的一个根为2,则______.14.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连接AC、BD,则图中阴影部分的面积为_____.15.某一时刻,一棵树高15m,影长为18m.此时,高为50m的旗杆的影长为_____m.16.若正六边形的边长为2,则此正六边形的边心距为______.17.如图,在△ABC中,D、E分别是边AB、AC上的两点,且DEBC,BD=AE,若AB=12cm,AC=24cm,则AE=_____.18.方程的解为_____.三、解答题(共66分)19.(10分)(1)计算;(2)解不等式.20.(6分)如图,在平面直角坐标系xOy中,直线y=x﹣2与双曲线y=(k≠0)相交于A,B两点,且点A的横坐标是1.(1)求k的值;(2)过点P(0,n)作直线,使直线与x轴平行,直线与直线y=x﹣2交于点M,与双曲线y=(k≠0)交于点N,若点M在N右边,求n的取值范围.21.(6分)解一元二次方程:x2+4x﹣5=1.22.(8分)如图,直线y=k1x+b与双曲线y=交于点A(1,4),点B(3,m).(1)求k1与k2的值;(2)求△AOB的面积.23.(8分)综合与探究如图,抛物线经过点A(-2,0),B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接AC,BC,DB,DC,(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求的值;(3)在(2)的条件下,若点M是轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.24.(8分)已知抛物线y=kx2+(1﹣2k)x+1﹣3k与x轴有两个不同的交点A、B.(1)求k的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点M,并求出点M的坐标;(3)当<k≤8时,由(2)求出的点M和点A,B构成的△ABM的面积是否有最值?若有,求出该最值及相对应的k值.25.(10分)如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=4,求阴影部分的面积.26.(10分)网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.【详解】∵某定弦抛物线的对称轴为直线x=2,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣2)2﹣2.将此抛物线向左平移2个单位,再向上平移3个单位,得到新抛物线的解析式为y=(x﹣2+2)2﹣2+3=x2﹣2.当x=2时,y=x2﹣2=0,∴得到的新抛物线过点(2,0).故选:A.【点睛】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.2、A【分析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.【详解】∵,∴∠AOB=∠BOC=∠COD=60°.∴阴影部分面积=.故答案为A.【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°.3、D【分析】直接利用根与系数的关系求得两根之和即可.【详解】设x1,x2是方程x2-1x-1=0的两根,则
x1+x2=1.
故选:D.【点睛】此题考查根与系数的关系,解题关键在于掌握运算公式.4、C【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【详解】解:化成一元二次方程一般形式是4x2-1x+7=0,则它的二次项系数是4,一次项系数是-1.
故选:C.【点睛】本题主要考查了一元二次方程的一般形式,关键把握要确定一次项系数,首先要把方程化成一般形式.5、D【分析】根据中心对称图形的定义逐个判断即可.【详解】解:A、是中心对称图形,故本选项不符合题意;
B、是中心对称图形,故本选项不符合题意;
C、是中心对称图形,故本选项符合题意;
D、不是中心对称图形,故本选项符合题意;故选D.【点睛】本题考查了对中心对称图形的定义,判断中心对称图形的关键是旋转180°后能够重合.能熟知中心对称图形的定义是解此题的关键.6、D【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.7、B【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【点睛】本题考查相似形的识别,联系图形根据相似图形的定义得出是解题的关键.8、D【分析】根据题意可以写出平移后的函数解析式,然后根据截x轴所得的线段长为4,可以求得a的值,本题得以解决.【详解】解:二次函数y=ax2的图象先向下平移2个单位,再向右平移3个单位之后的函数解析式为y=a(x﹣3)2﹣2,当y=0时,ax2﹣6ax+9a﹣2=0,设方程ax2﹣6ax+9a﹣2=0的两个根为x1,x2,则x1+x2=6,x1x2=,∵平移后的函数截x轴所得的线段长为4,∴|x1﹣x2|=4,∴(x1﹣x2)2=16,∴(x1+x2)2﹣4x1x2=16,∴36﹣4×=16,解得,a=,故选:D.【点睛】本题考查解二次函数综合题,解题关键是根据题意可以写出平移后的函数解析式.9、C【分析】根据菱形的性质可得AD=AB=4,∠DAB=180°-,AE=,然后根据旋转的性质可得:S△ABE=S△ADF,∠FAE=∠DAB=60°,最后根据S阴影=S扇形DAB+S△ADF―S△ABE―S扇形FAE即可求出阴影部分的面积.【详解】解:∵在菱形中,,,是的中点,∴AD=AB=4,∠DAB=180°-,AE=,∵绕点逆时针旋转至点与点重合,此时点旋转至处,∴S△ABE=S△ADF,∠FAE=∠DAB=60°∴S阴影=S扇形DAB+S△ADF―S△ABE―S扇形FAE=S扇形DAB―S扇形FAE==故选:C.【点睛】此题考查的是菱形的性质、旋转的性质和扇形的面积公式,掌握菱形的性质定理、旋转的性质和扇形的面积公式是解决此题的关键.10、B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】解:,顶点坐标是(-1,-4).
,顶点坐标是(1,-4).
所以将抛物线向右平移2个单位长度得到抛物线,
故选:B.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律和变化特点.二、填空题(每小题3分,共24分)11、【分析】连接OB、OC,如图,由圆周角定理可得∠BOC的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB、OC,如图,∵,∴∠BOC=90°,∵的长是,∴,解得:.故答案为:.【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键.12、1【解析】证明△ODA∽△CDO,则OD2=CD•DA,而则OD2=(4﹣n)2+n2=2n2﹣1n+16,CD=(m+n﹣4),DA=n,即可求解.【详解】解:点A、B的坐标分别为(4,0)、(0,4),即:OA=OB,∴∠OAB=45°=∠COD,∠ODA=∠ODA,∴△ODA∽△CDO,∴OD2=CD•DA,设点E(m,n),则点D(4﹣n,n),点C(m,4﹣m),则OD2=(4﹣n)2+n2=2n2﹣1n+16,CD=(m+n﹣4),DA=n,即2n2﹣1n+16=(m+n﹣4)×n,解得:mn=1=k,故答案为1.【点睛】本题考查的是反比例函数与一次函数的交点问题,涉及到三角形相似、一次函数等知识点,关键是通过设定点E的坐标,确定相关线段的长度,进而求解.13、1【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.【详解】把x=2代入方程得:4k−2−2=0,解得k=1故答案为:1.【点睛】本题主要考查了方程的根的定义,是一个基础的题目.14、2π【解析】通过分析图可知:△ODB经过旋转90°后能够和△OCA重合(证全等也可),因此图中阴影部分的面积=扇形AOB的面积-扇形COD的面积,所以S阴=π×(9-1)=2π.【详解】由图可知,将△OAC顺时针旋转90°后可与△ODB重合,∴S△OAC=S△OBD;因此S阴影=S扇形OAB+S△OBD-S△OAC-S扇形OCD=S扇形OAB-S扇形OCD=π×(9-1)=2π.故答案为2π.【点睛】本题中阴影部分的面积可以看作是扇形AOB与扇形COD的面积差,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.15、1【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴,由题意知AB=50,CD=15,CE=18,即,,解得x=1,经检验,x=1是原方程的解,即高为50m的旗杆的影长为1m.故答案为:1.【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例.16、.【分析】连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.【详解】连接OA、OB、OC、OD、OE、OF,∵正六边形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.17、1cm【分析】由题意直接根据平行线分线段成比例定理列出比例式,进行代入计算即可得到答案.【详解】解:∵DE//BC,∴,即,解得:AE=1.故答案为:1cm.【点睛】本题考查的是平行线分线段成比例定理,由题意灵活运用定理、找准对应关系是解题的关键.18、,【分析】因式分解法即可求解.【详解】解:x(2x-5)=0,,【点睛】本题考查了用提公因式法求解一元二次方程的解,属于简单题,熟悉解题方法是解题关键.三、解答题(共66分)19、(1)0;(2);【分析】(1)直接利用特殊角的三角函数值以及二次根式的性质和绝对值的性质分别化简得出答案;(2)先把不等式①按照去括号、移项、合并同类项、系数化为1的方法求出其解集;再把不等式②按照去分母、移项、合并同类项、系数化为1的方法求出其解集,最后求出其公共解集即可;【详解】解:(1)原式===0;(2)解不等式①得,x>﹣4;解不等式②得,;∴原不等式组的解集是;【点睛】本题主要考查了实数的运算,零指数幂,特殊角的三角函数值,解一元一次不等式组,掌握实数的运算,零指数幂,特殊角的三角函数值,解一元一次不等式组是解题的关键.20、(1)k=1;(2)n>1或﹣1<n<2.【分析】(1)把点A的横坐标代入一次函数解析式求出纵坐标,确定出点A的坐标,代入反比例解析式求出k的值即可;
(2)根据题意画出直线,根据图象确定出点M在N右边时n的取值范围即可.【详解】解:(1)令x=1,代入y=x﹣2,则y=1,∴A(1,1),∵点A(1,1)在双曲线y=(k≠2)上,∴k=1;(2)联立得:,解得或,即B(﹣1,﹣1),如图所示:当点M在N右边时,n的取值范围是n>1或﹣1<n<2.【点睛】此题考查了一次函数与反比例函数的交点问题,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.21、x2=﹣5,x2=2.【分析】利用因式分解法解方程.【详解】(x+5)(x﹣2)=2,x+5=2或x﹣2=2,所以x2=﹣5,x2=2.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.22、(1)k1与k2的值分别为﹣,4;(2)【分析】(1)先把A点坐标代入y=中可求出k2得到反比例函数解析式为y=,再利用反比例函数解析式确定B(3,),然后利用待定系数法求一次函数解析式得到k1的值;(2)设直线AB与x轴交于C点,如图,利用x轴上点的坐标特征求出C点坐标,然后根据三角形面积公式,利用S△AOB=S△AOC﹣S△BOC计算.【详解】解:(1)把A(1,4)代入y=得k2=1×4=4,∴反比例函数解析式为y=,把B(3,m)代入y=得3m=4,解得m=,则B(3,),把A(1,4),B(3,)代入y=k1x+b得,解得,∴一次函数解析式为y=﹣x+,∴k1与k2的值分别为﹣,4;(2)设直线AB与x轴交于C点,如图,当y=0时,﹣x+=0,解得x=4,则C(4,0),∴S△AOB=S△AOC﹣S△BOC=×4×4﹣×4×=.【点睛】本题考查了反比例函数与一次函数的综合,待定系数法求函数解析式,以及三角形的面积,熟练掌握待定系数法是解答本题的关键.23、(1);(2)3;(3).【分析】(1)利用待定系数法进行求解即可;(2)作直线DE⊥轴于点E,交BC于点G,作CF⊥DE,垂足为F,先求出S△OAC=6,再根据S△BCD=S△AOC,得到S△BCD=,然后求出BC的解析式为,则可得点G的坐标为,由此可得,再根据S△BCD=S△CDG+S△BDG=,可得关于m的方程,解方程即可求得答案;(3)存在,如下图所示,以BD为边或者以BD为对角线进行平行四边形的构图,以BD为边时,有3种情况,由点D的坐标可得点N点纵坐标为±,然后分点N的纵坐标为和点N的纵坐标为两种情况分别求解;以BD为对角线时,有1种情况,此时N1点与N2点重合,根据平行四边形的对边平行且相等可求得BM1=N1D=4,继而求得OM1=8,由此即可求得答案.【详解】(1)抛物线经过点A(-2,0),B(4,0),∴,解得,∴抛物线的函数表达式为;(2)作直线DE⊥轴于点E,交BC于点G,作CF⊥DE,垂足为F,∵点A的坐标为(-2,0),∴OA=2,由,得,∴点C的坐标为(0,6),∴OC=6,∴S△OAC=,∵S△BCD=S△AOC,∴S△BCD=,设直线BC的函数表达式为,由B,C两点的坐标得,解得,∴直线BC的函数表达式为,∴点G的坐标为,∴,∵点B的坐标为(4,0),∴OB=4,∵S△BCD=S△CDG+S△BDG=,∴S△BCD=,∴,解得(舍),,∴的值为3;(3)存在,如下图所示,以BD为边或者以BD为对角线进行平行四边形的构图,以BD为边时,有3种情况,∵D点坐标为,∴点N点纵坐标为±,当点N的纵坐标为时,如点N2,此时,解得:(舍),∴,∴;当点N的纵坐标为时,如点N3,N4,此时,解得:∴,,∴,;以BD为对角线时,有1种情况,此时N1点与N2点重合,∵,D(3,),∴N1D=4,∴BM1=N1D=4,∴OM1=OB+BM1=8,∴M1(8,0),综上,点M的坐标为:.【点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.24、(1)且;(2)见解析,M(3,4);(3)△ABM的面积有最大值,【分析】(1)根据题意得出△=(1-2k)2-4×k×(1-3k)=(1-4k)2>0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度纺织品ODM定制与合作合同
- 2024年建筑工程材料供需协议
- 2024三方合作经营协议合同
- 2024年度环保型涂料生产与销售合同
- 2024年城市基础设施合作合同
- 2024年办公桌租赁协议
- 2024年度体育赛事赞助与推广合同
- 2024年度智慧校园建设与运营合同
- 2024家居装饰墙地砖采购协议
- 2024年建筑安装安全协议
- 【公开课】《农业专题复习》【课件】
- 第7课《大雁归来》课件(共15张ppt) 部编版语文八年级下册
- 培训的方式和方法课件
- 三年级下册口算天天100题(A4打印版)
- 三基选择题(东南大学出版社)
- 2021年大唐集团招聘笔试试题及答案
- DBJ53/T-39-2020 云南省民用建筑节能设计标准
- 2022版义务教育数学课程标准解读课件PPT模板
- 实验五 PCR扩增课件
- 马拉松运动医疗支援培训课件
- 中医药宣传手册
评论
0/150
提交评论