浙江省宁波北仑区东海实验学校2022-2023学年数学九年级第一学期期末学业水平测试模拟试题含解析_第1页
浙江省宁波北仑区东海实验学校2022-2023学年数学九年级第一学期期末学业水平测试模拟试题含解析_第2页
浙江省宁波北仑区东海实验学校2022-2023学年数学九年级第一学期期末学业水平测试模拟试题含解析_第3页
浙江省宁波北仑区东海实验学校2022-2023学年数学九年级第一学期期末学业水平测试模拟试题含解析_第4页
浙江省宁波北仑区东海实验学校2022-2023学年数学九年级第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.不等式组的解集是()A. B. C. D.2.若关于的一元二次方程的一个根是,则的值是()A.1 B.0 C.-1 D.23.已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为().A.相离 B.相切 C.相交 D.无法确定4.如图,⊙O是直角△ABC的内切圆,点D,E,F为切点,点P是上任意一点(不与点E,D重合),则∠EPD=()A.30° B.45° C.60° D.75°5.下列所给图形是中心对称图形但不是轴对称图形的是()A. B. C. D.6.在Rt△ABC中,∠C=90°,若AC=4,AB=5,则cosB的值()A. B. C. D.7.二次函数的部分图象如图所示,由图象可知方程的根是()A. B.C. D.8.如图,在扇形纸片AOB中,OA=10,ÐAOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为()A.12π B.11π C.10π D.10π+59.若两个相似三角形的相似比是1:2,则它们的面积比等于()A.1: B.1:2 C.1:3 D.1:410.下列四个图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.11.如图,在中,,将绕点旋转到'的位置,使得,则的大小为()A. B. C. D.12.已知反比例函数,当x>0时,y随x的增大而增大,则k的取值范围是()A.k>0 B.k<0 C.k≥1 D.k≤1二、填空题(每题4分,共24分)13.已知在中,,,,那么_____________.14.如图,从一块直径是的圆形铁皮上剪出一个圆心角是的扇形,如果将剪下来的扇形围成一个圆锥,那么圆锥的底面圆的半径为___________.15.若是关于x的一元二次方程的解,则代数式的值是________.16.一只小狗自由自在地在如图所示的某个正方形场地跑动,然后随意停在图中阴影部分的概率是__.17.如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是___________.(写出所有正确结论的序号)①AM平分∠CAB;②AM2=AC•AB;③若AB=4,∠APE=30°,则的长为;④若AC=3,BD=1,则有CM=DM=.18.已知扇形的面积为3πcm2,半径为3cm,则此扇形的圆心角为_____度.三、解答题(共78分)19.(8分)综合与实践—探究正方形旋转中的数学问题问题情境:已知正方形中,点在边上,且.将正方形绕点顺时针旋转得到正方形(点,,,分别是点,,,的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,当点落在正方形的对角线上时,设线段与交于点.求证:四边形是矩形;(2)“善学”小组提出问题:如图2,当线段经过点时,猜想线段与满足的数量关系,并说明理由;深入探究:(3)请从下面,两题中任选一题作答.我选择题.A.在图2中连接和,请直接写出的值.B.“好问”小组提出问题:如图3,在正方形绕点顺时针旋转的过程中,设直线交线段于点.连接,并过点作于点.请在图3中补全图形,并直接写出的值.20.(8分)综合与探究如图,已知抛物线与轴交于,两点,与轴交于点,对称轴为直线,顶点为.(1)求抛物线的解析式及点坐标;(2)在直线上是否存在一点,使点到点的距离与到点的距离之和最小?若存在,求出点的坐标;若不存在,请说明理由.(3)在轴上取一动点,,过点作轴的垂线,分别交抛物线,,于点,,.①判断线段与的数量关系,并说明理由②连接,,,当为何值时,四边形的面积最大?最大值为多少?21.(8分)已知关于的一元二次方程有两个不相等的实数根(1)求的取值范围;(2)若为正整数,且该方程的根都是整数,求的值.22.(10分)随着人民生活水平的不断提高,某市家庭轿车的拥有量逐年增加,据统计,该市2017年底拥有家庭轿车64万辆,2019年底家庭轿车的拥有量达到100万辆.(1)求2017年底至2019年底该市汽车拥有量的年平均增长率;(2)该市交通部门为控制汽车拥有量的增长速度,要求到2020年底全市汽车拥有量不超过118万辆,预计2020年报废的汽车数量是2019年底汽车拥有量的8%,求2019年底至2020年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.23.(10分)某商场试销一种成本为每件元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.求一次函数的表达式;若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?24.(10分)某商场“六一”期间进行一个有奖销售的活动,设立了一个可以自由转动的转盘(如图),并规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).下表是此次促销活动中的一组统计数据:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240298604落在“可乐”区域的频率0.60.610.60.590.604(1)计算并完成上述表格;(2)请估计当n很大时,频率将会接近__________;假如你去转动该转盘一次,你获得“可乐”的概率约是__________;(结果精确到0.1)(3)在该转盘中,表示“车模”区域的扇形的圆心角约是多少度?25.(12分)如图1,的直径,点为线段上一动点,过点作的垂线交于点,,连结,.设的长为,的面积为.小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小东的探究过程,请帮助小东完成下面的问题.(1)通过对图1的研究、分析与计算,得到了与的几组对应值,如下表:00.511.522.533.5400.71.72.94.85.24.60请求出表中小东漏填的数;(2)如图2,建立平面直角坐标系,描出表中各对应值为坐标的点,画出该函数的大致图象;(3)结合画出的函数图象,当的面积为时,求出的长.26.如图,点A、B、C、D、E都在⊙O上,AC平分∠BAD,且AB∥CE,求证:.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据不等式的性质解不等式组即可.【详解】解:化简可得:因此可得故选D.【点睛】本题主要考查不等式组的解,这是中考的必考点,应当熟练掌握.2、B【分析】根据一元二次方程的解的定义,把x=1代入一元二次方程可得到关于m的一元一次方程,然后解一元一次方程即可.【详解】把x=1代入x2-x+m=1得1-1+m=1,解得m=1.故选B.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.3、C【解析】试题分析:半径r=5,圆心到直线的距离d=3,∵5>3,即r>d,∴直线和圆相交,故选C.【考点】直线与圆的位置关系.4、B【分析】连接OE,OD,由切线的性质易证四边形OECD是矩形,则可得到∠EOD的度数,由圆周角定理进而可求出∠EPD的度数.【详解】解:连接OE,OD,∵⊙O是直角△ABC的内切圆,点D,E,F为切点,∴OE⊥BC,OD⊥AC,∴∠C=∠OEC=∠ODC=90°,∴四边形OECD是矩形,∴∠EOD=90°,∴∠EPD=∠EOD=45°,故选:B.【点睛】此题主要考查了圆周角定理以及切线的性质等知识,得出∠EOD=90°是解题关键.5、D【解析】A.此图形不是中心对称图形,不是轴对称图形,故A选项错误;B.此图形是中心对称图形,也是轴对称图形,故B选项错误;C.此图形不是中心对称图形,是轴对称图形,故D选项错误.D.此图形是中心对称图形,不是轴对称图形,故C选项正确;故选D.6、B【分析】根据勾股定理计算出BC长,再根据余弦定义可得答案.【详解】如图所示:∵AC=4,AB=5,∴BC===3,∴cosB==.故选:B.【点睛】考查了锐角三角函数,解题关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.7、A【分析】根据图象与x轴的交点即可求出方程的根.【详解】根据题意得,对称轴为∵∴∴故答案为:A.【点睛】本题考查了一元二次方程的问题,掌握一元二次方程图象的性质是解题的关键.8、A【分析】点O所经过的路线是三段弧,一段是以点B为圆心,10为半径,圆心角为90°的弧,另一段是一条线段,和弧AB一样长的线段,最后一段是以点A为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】由题意得点O所经过的路线长=90π×10故选A.【点睛】解题的关键是熟练掌握弧长公式:,注意在使用公式时度不带单位.9、D【分析】根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵两个相似三角形的相似比是1:2,∴这两个三角形们的面积比为1:4,故选:D.【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解决此题的关键.10、D【分析】根据轴对称图形与中心对称图形的概念,并结合图形的特点求解.【详解】解:A、不是轴对称图形,是中心对称图形,故选项错误;

B、不是轴对称图形,是中心对称图形,故选项错误;

C、是轴对称图形,不是中心对称图形,故选项错误;

D、是轴对称图形,是中心对称图形,故选项正确.

故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念.

轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;

中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.11、B【分析】由平行线的性质可得∠C'CA=∠CAB=64°,由折叠的性质可得AC=AC',∠BAB'=∠CAC',可得∠ACC'=∠C'CA=64°,由三角形内角和定理可求解.【详解】∵CC′∥AB,

∴∠C'CA=∠CAB=64°,

∵将△ABC绕点A旋转到△AB′C′的位置,

∴AC=AC',∠BAB'=∠CAC',

∴∠ACC'=∠C'CA=64°,

∴∠C'AC=180°−2×64°=52°,

故选:B.【点睛】本题考查旋转的性质,平行线的判定,等腰三角形的性质,灵活运用旋转的性质是本题的关键.12、B【分析】根据反比例函数的性质,当x>0时,y随x的增大而增大得出k的取值范围即可.【详解】解:∵反比例函数中,当x>0时,y随x的增大而增大,∴k<0,故选:B.【点睛】本题考查的是反比例函数的性质,反比例函数(k≠0)中,当k>0时,双曲线的两支分别位于第一、三象限,在每一象限内y随x的增大而减小;当k<0时,双曲线的两支分别位于第二、四象限,在每一象限内y随x的增大而增大.二、填空题(每题4分,共24分)13、1【分析】根据三角函数的定义即可求解.【详解】∵cotB=,

∴AC==3BC=1.

故答案是:1.【点睛】此题考查锐角三角函数的定义及运用,解题关键在于掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,余切为邻边比对边.14、【分析】根据题意可知扇形ABC围成圆锥后的底面周长就是弧BC的弧长,再根据弧长公式和圆周长公式来求解.【详解】解:作于点,连结OA、BC,∵∠BAC=90°∴BC是直径,OB=OC,,圆锥的底面圆的半径故答案为:【点睛】本题考查了扇形围成圆锥形,圆锥的底面圆的周长就是原来扇形的弧长,找到它们的关系是解题的关键.15、1【分析】把x=2代入已知方程求得2a+b的值,然后将其整体代入所求的代数式并求值即可.【详解】解:∵关于x的一元二次方程的解是x=2,∴4a+2b-8=0,则2a+b=4,∴2020+2a+b=2020+(2a+b)=2020+4=1.故答案是:1.【点睛】本题考查了一元二次方程的解定义,以及求代数式的值,解题时,利用了“整体代入”的数学思想.16、.【分析】根据概率公式求概率即可.【详解】图上共有16个方格,黑色方格为7个,小狗最终停在黑色方格上的概率是.故答案为:.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.17、①②④【解析】连接OM,由切线的性质可得OM⊥PC,继而得OM∥AC,再根据平行线的性质以及等边对等角即可求得∠CAM=∠OAM,由此可判断①;通过证明△ACM∽△AMB,根据相似三角形的对应边成比例可判断②;求出∠MOP=60°,利用弧长公式求得的长可判断③;由BD⊥PC,AC⊥PC,OM⊥PC,可得BD∥AC//OM,继而可得PB=OB=AO,PD=DM=CM,进而有OM=2BD=2,在Rt△PBD中,PB=BO=OM=2,利用勾股定理求出PD的长,可得CM=DM=DP=,由此可判断④.【详解】连接OM,∵PE为⊙O的切线,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB,故①正确;∵AB为⊙O的直径,∴∠AMB=90°,∵∠CAM=∠MAB,∠ACM=∠AMB,∴△ACM∽△AMB,∴,∴AM2=AC•AB,故②正确;∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的长为,故③错误;∵BD⊥PC,AC⊥PC,OM⊥PC,∴BD∥AC//OM,∴△PBD∽△PAC,∴,∴PB=PA,又∵AO=BO,AO+BO=AB,AB+PB=PA,∴PB=OB=AO,又∵BD∥AC//OM,∴PD=DM=CM,∴OM=2BD=2,在Rt△PBD中,PB=BO=OM=2∴PD==,∴CM=DM=DP=,故④正确,故答案为①②④.【点睛】本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.18、120【分析】利用扇形的面积公式:S=计算即可.【详解】设扇形的圆心角为n°.则有3π=,解得n=120,故答案为120【点睛】此题主要考查扇形的面积公式,解题的关键是熟知扇形的面积公式的运用.三、解答题(共78分)19、(1)见解析;(2);(3)A.,B..【分析】(1)根据旋转性质证得,从而证得绪论;(2)连接、,过点作,根据旋转性质结合三角形三线合一的性质证得,再证得四边形是矩形,从而求得结论;(3)A.设,根据旋转性质结合两边对应成比例且夹角相等证得,利用相似三角形对应边成比例再结合勾股定理即可求得答案;B.作交直线于点,根据旋转性质利用AAS证得,证得OP是线段的中垂线,根据旋转性质结合两边对应成比例且夹角相等证得,利用相似三角形对应高的比等于相似比再结合勾股定理即可求得答案;【详解】(1)由题意得:,,由旋转性质得:,∵四边形是矩形(2)连接、,过点作于N,由旋转得:,∵,,∵ON⊥D,∠=∠,∴四边形是矩形,∴,∴;(3)A.如图,连接,,,由旋转的性质得:∠BO=∠,BO=O,,∴,∴,,,设,则,B.如图,过点作AG∥交直线于点G,过点O作交直线于点,连接OP,∵AG∥,,四边形是正方形,由旋转可知:,,,,,,,,,,,,在和中,,,又∵,,,,,,,又∵,,,,,设,则,,在中,由勾股定理可得:,.【点睛】本题考查四边形综合题、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、、勾股定理、矩形的性质、线段的垂直平分线的性质和判定等知识,解题的关键是准确寻找全等三角形解决问题.20、(1),点坐标为;(2)点的坐标为;(3)①;②当为-2时,四边形的面积最大,最大值为4.【分析】(1)用待定系数法即可求出抛物线解析式,然后化为顶点式求出点D的坐标即可;(2)利用轴对称-最短路径方法确定点M,然后用待定系数法求出直线AC的解析式,进而可求出点M的坐标;(3)①先求出直线AD的解析式,表示出点F、G、P的坐标,进而表示出FG和FP的长度,然后即可判断出线段与的数量关系;②根据割补法分别求出△AED和△ACD的面积,然后根据列出二次函数解析式,利用二次函数的性质求解即可.【详解】解:(1)由抛物线与轴交于,两点得,解得,故抛物线解析式为,由得点坐标为;(2)在直线上存在一点,到点的距离与到点的距离之和最小.根据抛物线对称性,∴,∴使的值最小的点应为直线与对称轴的交点,当时,,∴,设直线解析式为直线,把、分别代入得,解之得:,∴直线解析式为,把代入得,,∴,即当点到点的距离与到点的距离之和最小时的坐标为;(3)①,理由为:设直线解析式为,把、分别代入直线得,解之得:,∴直线解析式为,则点的坐标为,同理的坐标为,则,,∴;②∵,,,∴AO=3,DM=2,∴S△ACD=S△ADM+S△CDM=.设点的坐标为,,∴,∴当为-2时,的最大值为1.∴,∴当为-2时,四边形的面积最大,最大值为4.【点睛】本题考查了待定系数法求函数解析式,一般式与顶点式的互化,轴对称最短的性质,坐标与图形的性质,三角形的面积公式,割补法求图形的面积,以及二次函数的性质,熟练掌握待定系数法和二次函数的性质是解答本题的关键.21、(1)k<(1)1【分析】(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的范围.(1)找出k范围中的整数解确定出k的值,经检验即可得到满足题意k的值.【详解】解:(1)∵关于的一元二次方程有两个不相等的实数根,∴.解得:k<.(1)∵k为k<的正整数,∴k=1或1.当k=1时,方程为,两根为,非整数,不合题意;当k=1时,方程为,两根为或,都是整数,符合题意.∴k的值为1.22、(1)2017年底至2019年底该市汽车拥有量的年平均增长率为25%;(2)2019年底至2020年底该市汽车拥有量的年增长率要小于等于26%才能达到要求.【分析】(1)设2017年底至2019年底该市汽车拥有量的年平均增长率为x,根据2017年底及2019年底该市汽车拥有量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设2019年底至2020年底该市汽车拥有量的年增长率为y,根据2020年底全市汽车拥有量不超过118万辆,即可得出关于y的一元一次不等式,解之即可得出结论.【详解】解:(1)设2017年底至2019年底该市汽车拥有量的年平均增长率为x,依题意,得:64(1+x)2=100,解得:x1=0.25=25%,x2=﹣2.25(不合题意,舍去).答:2017年底至2019年底该市汽车拥有量的年平均增长率为25%.(2)设2019年底至2020年底该市汽车拥有量的年增长率为y,依题意,得:100(1+y)﹣100×8%≤118,解得:y≤0.26=26%.答:2019年底至2020年底该市汽车拥有量的年增长率要小于等于26%才能达到要求.【点睛】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23、(1);(2)销售单价定为元时,商场可获得最大利润,最大利润是元.【分析】(1)根据题意将(65,55),(75,45)代入解二元一次方程组即可;(2)表示出利润解析式,化成顶点式讨论即可解题.【详解】解:根据题意得,解得.所求一次函数的表达式为.(2),∵抛物线的开口向下,∴当时,随的增大而增大,又因为获利不得高于45%,60所以,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论