浙江省杭州市萧山区城北片2022-2023学年九年级数学第一学期期末联考模拟试题含解析_第1页
浙江省杭州市萧山区城北片2022-2023学年九年级数学第一学期期末联考模拟试题含解析_第2页
浙江省杭州市萧山区城北片2022-2023学年九年级数学第一学期期末联考模拟试题含解析_第3页
浙江省杭州市萧山区城北片2022-2023学年九年级数学第一学期期末联考模拟试题含解析_第4页
浙江省杭州市萧山区城北片2022-2023学年九年级数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.若∽,,,,则的长为()A.4 B.5 C.6 D.72.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤3.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数的图像上,若菱形的边长为4,则k值为()A. B. C. D.4.如图,在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.或 B. C. D.或5.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x-8=0 B.x2-9x-8=0C.x2-9x+8=0 D.2x2-9x+8=06.下列图形是中心对称图形的是()A. B. C. D.7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大8.如图,与正六边形的边分别交于点,点为劣弧的中点.若.则点到的距离是()A. B. C. D.9.二次函数y=x2+(t﹣1)x+2t﹣1的对称轴是y轴,则t的值为()A.0 B. C.1 D.210.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到颜色相同的球的概率为()A. B. C. D.二、填空题(每小题3分,共24分)11.一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是______.12.如图所示,写出一个能判定的条件________.13.若关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是_____.14.若二次函数的图像经过点,则的值是_______.15.如图所示,点为矩形边上一点,点在边的延长线上,与交于点,若,,,则______.16.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数的图象相交于点和点,则关于x的不等式的解集是_____.17.如图,D是反比例函数(k<0)的图象上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=﹣x+m与的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为_______.18.如图,菱形的边长为1,,以对角线为一边,在如图所示的一侧作相同形状的菱形,再依次作菱形,菱形,……,则菱形的边长为_______.三、解答题(共66分)19.(10分)已知:如图,一次函数的图象与反比例函数的图象交于A、B两点,且点B的坐标为.(1)求反比例函数的表达式;(2)点在反比例函数的图象上,求△AOC的面积;(3)在(2)的条件下,在坐标轴上找出一点P,使△APC为等腰三角形,请直接写出所有符合条件的点P的坐标.20.(6分)如图,在A港口的正东方向有一港口B.某巡逻艇从A港口沿着北偏东60°方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶2小时到达港口B.求A,B两港之间的距离(结果保留根号).21.(6分)(1)已知,求的值;(2)已知直线分别截直线于点,截直线于点,且,,求的长.22.(8分)如图,在中,弦AB,CD相交于点E,=,点D在上,连结CO,并延长CO交线段AB于点F,连接OA,OB,且OA=2,∠OBA=30°(1)求证:∠OBA=∠OCD;(2)当AOF是直角三角形时,求EF的长;(3)是否存在点F,使得,若存在,请求出EF的长,若不存在,请说明理由.23.(8分)先化简,再求值的值,其中.24.(8分)如图1,的余切值为2,,点D是线段上的一动点(点D不与点A、B重合),以点D为顶点的正方形的另两个顶点E、F都在射线上,且点F在点E的右侧,联结,并延长,交射线于点P.(1)点D在运动时,下列的线段和角中,________是始终保持不变的量(填序号);①;②;③;④;⑤;⑥;(2)设正方形的边长为x,线段的长为y,求y与x之间的函数关系式,并写出定义域;(3)如果与相似,但面积不相等,求此时正方形的边长.25.(10分)某演出队要购买一批演出服,商店给出如下条件:如果一次性购买不超过10件,每件80元;如果一次性购买多于10件,每增加1件,每件服装降低2元,但每件服装不得低于50元,演出队一次性购买这种演出服花费1200元,请问此演出队购买了多少件这种演出服?26.(10分)已知:如图,Rt△ABC中,∠ACB=90°,sinB=,点D、E分别在边AB、BC上,且AD∶DB=2∶3,DE⊥BC.(1)求∠DCE的正切值;(2)如果设,,试用、表示.

参考答案一、选择题(每小题3分,共30分)1、C【分析】利用相似三角形的性质,列出比例式即可解决问题.【详解】解:∵△ABC∽△DEF,,,,∴,∴,∴EF=6.故选C.【点睛】本题考查相似三角形的性质,解题的关键是熟练掌握相似三角形的对应边成比例,属于中考基础题.2、C【解析】试题解析:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=-=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=-2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(-2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.3、C【分析】由题意根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值.【详解】解:∵在菱形ABOC中,∠A=60°,菱形边长为4,∴OC=4,∠COB=60°,C的横轴坐标为,C的纵轴坐标为,∴点C的坐标为(-2,),∵顶点C在反比例函数的图象上,∴=,得k=,故选:C.【点睛】本题考查反比例函数图像以及菱形的性质,解答本题的关键是明确题意,求出点C的坐标,利用反比例函数的性质解答.4、D【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或-k,把B点的横纵坐标分别乘以或-即可得到点B′的坐标.【详解】解:∵以原点O为位似中心,相似比为,把△ABO缩小,

∴点B(-9,-3)的对应点B′的坐标是(-3,-1)或(3,1).

故选D.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.5、C【详解】解:设人行道的宽度为x米,根据题意得,(18﹣3x)(6﹣2x)=61,化简整理得,x2﹣9x+8=1.故选C.6、B【分析】根据中心对称图形的概念和各图的性质求解.【详解】A、是轴对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点睛】此题主要考查了中心对称图形的概念.要注意,中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、B【解析】先根据根的判别式得出方程有两个不相等的实数根,设方程x2+bx-2=0的两个根为c、d,根据根与系数的关系得出c+d=-b,cd=-2,再判断即可.【详解】x2+bx−2=0,△=b2−4×1×(−2)=b2+8,即方程有两个不相等的实数根,设方程x2+bx−2=0的两个根为c、d,则c+d=−b,cd=−2,由cd=−2得出方程的两个根一正一负,由c+d=−b和b<0得出方程的两个根中,正数的绝对值大于负数的绝对值,故答案选:B.【点睛】本题考查的知识点是根的判别式及根与系数的关系,解题的关键是熟练的掌握根的判别式及根与系数的关系.8、C【分析】连接OM,作,交MF与点H,根据正六边性的性质可得出,,得出为等边三角形,再求OH即可.【详解】解:∵六边形是正六边形,∴∵点为劣弧的中点∴连接OM,作,交MF与点H∵为等边三角形∴FM=OM,∴故答案为:C.【点睛】本题考查的知识点有多边形的内角与外角,特殊角的三角函数值,等边三角形的性质,理解题意正确作出辅助线是解题的关键.9、C【解析】根据二次函数的对称轴方程计算.【详解】解:∵二次函数y=x2+(t﹣1)x+2t﹣1的对称轴是y轴,∴﹣=0,解得,t=1,故选:C.【点睛】本题考查二次函数对称轴性质,熟练掌握对称轴的公式是解题的关键.10、C【分析】用列表法或树状图法可以列举出所有等可能出现的结果,然后看符合条件的占总数的几分之几即可【详解】解:两次摸球的所有的可能性树状图如下:

共有4种等可能的结果,其中两次都摸到颜色相同的球结果共有2种,

∴两次都摸到颜色相同的球的概率为.

故选C.【点睛】本题考查用树状图或列表法求等可能事件发生的概率,关键是列举出所有等可能出现的结果数,然后用分数表示,同时注意“放回”与“不放回”的区别.二、填空题(每小题3分,共24分)11、【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】由图可知,黑色方砖6块,共有16块方砖,

∴黑色方砖在整个地板中所占的比值,

∴小球最终停留在黑色区域的概率是,故答案为:.【点睛】本题考查了几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.12、(答案不唯一)【分析】已知有公共角∠C,由相似三角形的判定方法可得出答案.【详解】已知△ABC和△DCA中,∠ACD=∠BAC;

如果△ABC∽△DAC,需满足的条件有:

①∠DAC=∠B或∠ADC=∠BAC;

②AC2=DC•BC;

故答案为:AC2=DC•BC(答案不唯一).【点睛】此题主要考查了相似三角形的判定方法;熟记三角形相似的判定方法是解决问题的关键.13、k≥-1【解析】首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式△=b2-4ac=4+4k≥0,两者结合得出答案即可.【详解】当时,方程是一元一次方程:,方程有实数根;当时,方程是一元二次方程,解得:且.综上所述,关于的方程有实数根,则的取值范围是.故答案为【点睛】考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略这种情况.14、1【分析】首先根据二次函数的图象经过点得到,再整体代值计算即可.【详解】解:∵二次函数的图象经过点,

∴,

∴,

∴==1,

故答案为1.【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是利用整体代值计算,此题比较简单.15、【分析】设,则,,与的交点为,首先根据同角的余角相等得到,可判定,利用对应边成比例推出,再根据平行线分线段成比例推出,进而求得,最后再次根据平行线分线段成比例得到.【详解】设,则,,与的交点为,,.∵,又∵,.,,∵DM∥CE.∴,.又∵AM∥CE.故答案为:.【点睛】本题考查了矩形的性质,相似三角形的判定和性质,以及平行线分线段成比例,利用相似三角形的性质求出DF是解题的关键.16、-6<x<0或x>2;【解析】观察一次函数和反比例函数图象,一次函数比反比例函数高的部分就是所求.【详解】解:本题初中阶段只能用数形结合,由图知-6<x<0或x>2;点睛:利用一次函数图象和反比例函数图象性质数形结合解不等式:形如式不等式,构造函数,=,如果,找出比,高的部分对应的x的值,,找出比,低的部分对应的x的值.17、-1【详解】解:∵的图象经过点C,∴C(0,1),将点C代入一次函数y=-x+m中,得m=1,∴y=-x+1,令y=0得x=1,∴A(1,0),∴S△AOC=×OA×OC=1,∵四边形DCAE的面积为4,∴S矩形OCDE=4-1=1,∴k=-1故答案为:-1.18、【解析】过点作垂直OA的延长线与点,根据“直角三角形30°所对的直角边等于斜边的一半”求出,同样的方法求出和的长度,总结规律即可得出答案.【详解】过点作垂直OA的延长线与点根据题意可得,,则,∴在RT△中,又为菱形的对角线∴,故菱形的边长为;过点作垂直的延长线与点则,∴,∴在RT△中,又为菱形的对角线∴,故菱形的边长为;过点作垂直的延长线与点则,∴,∴在RT△中,又为菱形的对角线∴,故菱形的边长为;……∴菱形的边长为;故答案为.【点睛】本题考查的是菱形,难度较高,需要熟练掌握“在直角三角形中,30°的角所对的直角边等于斜边的一半”这一基本性质.三、解答题(共66分)19、(1);(2);(3)(-1,0)、(0,0)、(0,1).【详解】(1)一次函数的图象过点B,∴∴点B坐标为∵反比例函数的图象经过点B反比例函数表达式为(2)设过点A、C的直线表达式为,且其图象与轴交于点D∵点在反比例函数的图象上∴∴点C坐标为∵点B坐标为∴点A坐标为解得:过点A、C的直线表达式为∴点D坐标为∴(3)①当点P在x轴上时,设P(m,0)∵AC=,AP=,CP=,∴=或=,解得:m=0或-1②当点P在y轴上时,设P(0,n),∵AC=,AP=,CP=,∴=或=解得:n=0或1综上所述:点P的坐标可能为、、20、A,B间的距离为(20+20)海里.【分析】过点C作CD⊥AB于点D,根据题意可得,∠ACD=60°,∠BCD=45°,BC=20×2=40,然后根据锐角三角函数即可求出A,B间的距离.【详解】解:如图,过点C作CD⊥AB于点D,根据题意可知:∠ACD=60°,∠BCD=45°,BC=20×2=40,∴在Rt△BCD中,CD=BD=BC=20,在Rt△ACD中,AD=CD•tan60°=20,∴AB=AD+BD=20+20(海里).答:A,B间的距离为(20+20)海里.【点睛】本题考查了解直角三角形的应用-方向角问题,解题的关键是掌握方向角的定义.21、(1)9;(2)6.【分析】(1)交叉相乘,化简后同除以y即可得出答案;(2)根据平行线的性质计算即可得出答案.【详解】解:(1)∴;(2)∵∴即:∴【点睛】本题考查的是解分式方程以及平行线的性质,比较简单,需要熟练掌握相关基础知识.22、(1)详见解析;(2)或;(3)【分析】(1)根据在“同圆或等圆中,同弧或等弧所对的圆周角相等”可得;(2)分两种情况讨论,当时,解直角三角形AFO可求得AF和OF的长,再解直角三角形EFC可得;当时,解直角三角形AFO可求得AF和OF的长,根据三角函数求解;(3)由边边边定理可证,再证,根据对应边成比例求解.【详解】解:(1)延长AO,CO分别交圆于点M,N为直径弧AC=弧BD弧CD=弧AB(2)①当时②当时,,,综上所述:或(3)连结,过点分别作于点,于点弧AC=弧BD弧CD=弧AB∴∴∵∴∵∴∴∵∴∵∴∵∴∵∴∴∴【点睛】本题考查圆周角定理,解直角三角形,相似三角形的判定与性质的综合应用,根据条件选择对应知识点且具有综合能力是解答此题的关键.23、;【分析】先算括号里面的,再算除法,根据特殊角的三角函数值先得出x,再代入即可.【详解】原式.当时,原式.【点睛】本题考查了分式的化简求值以及特殊角的三角函数值,是基础知识要熟练掌握.24、(1)④⑤;(2);(3)或.【分析】(1)作于M,交于N,如图,利用三角函数的定义得到,设,则,利用勾股定理得,解得,即,,设正方形的边长为x,则,,由于,则可判断为定值;再利用得到,则可判断为定值;在中,利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论