




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年福建省福州市延安中学中考联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠12.如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为()A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)3.如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是()A. B.2 C.2 D.44.若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是()A. B. C. D.5.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30° B.25°C.20° D.15°6.下列命题中假命题是()A.正六边形的外角和等于 B.位似图形必定相似C.样本方差越大,数据波动越小 D.方程无实数根7.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=()A.50° B.40° C.30° D.20°8.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A. B. C. D.9.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为()A. B. C. D.110.如果解关于x的分式方程时出现增根,那么m的值为A.-2 B.2 C.4 D.-411.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是()A. B. C. D.12.如图,在中,,,,点在以斜边为直径的半圆上,点是的三等分点,当点沿着半圆,从点运动到点时,点运动的路径长为()A.或 B.或 C.或 D.或二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为.14.如图,AB为半圆的直径,且AB=2,半圆绕点B顺时针旋转40°,点A旋转到A′的位置,则图中阴影部分的面积为_____(结果保留π).15.如图放置的正方形,正方形,正方形,…都是边长为的正方形,点在轴上,点,…,都在直线上,则的坐标是__________,的坐标是______.16.数据﹣2,0,﹣1,2,5的平均数是_____,中位数是_____.17.一组数据10,10,9,8,x的平均数是9,则这列数据的极差是_____.18.计算(-2)×3+(-3)=_______________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由20.(6分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.21.(6分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______;将条形统计图补充完整;该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.22.(8分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若DE=3,sin∠BDE=,求AC的长.23.(8分)如图,已知是的直径,点、在上,且,过点作,垂足为.求的长;若的延长线交于点,求弦、和弧围成的图形(阴影部分)的面积.24.(10分)如图,在平行四边形ABCD中,E、F为AD上两点,AE=EF=FD,连接BE、CF并延长,交于点G,GB=GC.(1)求证:四边形ABCD是矩形;(1)若△GEF的面积为1.①求四边形BCFE的面积;②四边形ABCD的面积为.25.(10分)对几何命题进行逆向思考是几何研究中的重要策略,我们知道,等腰三角形两腰上的高线相等,那么等腰三角形两腰上的中线,两底角的角平分线也分别相等吗?它们的逆命题会正确吗?(1)请判断下列命题的真假,并在相应命题后面的括号内填上“真”或“假”.①等腰三角形两腰上的中线相等;②等腰三角形两底角的角平分线相等;③有两条角平分线相等的三角形是等腰三角形;(2)请写出“等腰三角形两腰上的中线相等”的逆命题,如果逆命题为真,请画出图形,写出已知、求证并进行证明,如果不是,请举出反例.26.(12分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?27.(12分)如图,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圆⊙O上的一动点(点P与点C位于直线AB的异侧)连接AP、BP,延长AP到D,使PD=PB,连接BD.(1)求证:PC∥BD;(2)若⊙O的半径为2,∠ABP=60°,求CP的长;(3)随着点P的运动,的值是否会发生变化,若变化,请说明理由;若不变,请给出证明.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】
先根据AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把两式相加即可得出结论.【详解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故选:D.【点睛】本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补.2、B【解析】令x=0,y=6,∴B(0,6),∵等腰△OBC,∴点C在线段OB的垂直平分线上,∴设C(a,3),则C'(a-5,3),∴3=3(a-5)+6,解得a=4,∴C(4,3).故选B.点睛:掌握等腰三角形的性质、函数图像的平移.3、C【解析】
连接,交于点设则根据△AMN的面积为4,列出方程求出的值,再计算半径即可.【详解】连接,交于点内切于正方形为的切线,经过点为等腰直角三角形,为的切线,设则△AMN的面积为4,则即解得故选:C.【点睛】考查圆的切线的性质,等腰直角三角形的性质,三角形的面积公式,综合性比较强.4、D【解析】∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a−b<0,故B错误,ab<0,故C错误,<0,故D正确.故选D.5、B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,6、C【解析】试题解析:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C.考点:命题与定理.7、B【解析】试题解析:延长ED交BC于F,∵AB∥DE,∴在△CDF中,故故选B.8、C【解析】试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C.考点:中心对称图形的概念.9、B【解析】分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.详解:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故选B.点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.10、D【解析】
,去分母,方程两边同时乘以(x﹣1),得:m+1x=x﹣1,由分母可知,分式方程的增根可能是1.当x=1时,m+4=1﹣1,m=﹣4,故选D.11、A【解析】
根据左视图的概念得出各选项几何体的左视图即可判断.【详解】解:A选项几何体的左视图为;
B选项几何体的左视图为;
C选项几何体的左视图为;
D选项几何体的左视图为;
故选:A.【点睛】本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.12、A【解析】
根据平行线的性质及圆周角定理的推论得出点M的轨迹是以EF为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论.【详解】当点D与B重合时,M与F重合,当点D与A重合时,M与E重合,连接BD,FM,AD,EM,∵∴∵AB是直径即∴∴点M的轨迹是以EF为直径的半圆,∵∴以EF为直径的圆的半径为1∴点M运动的路径长为当时,同理可得点M运动的路径长为故选:A.【点睛】本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】试题分析:先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.故答案为1.考点:代数式求值.14、【解析】【分析】根据题意可得出阴影部分的面积等于扇形ABA′的面积加上半圆面积再减去半圆面积.【详解】∵S阴影=S扇形ABA′+S半圆-S半圆=S扇形ABA′==,故答案为.【点睛】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式且能准确识图是解题的关键.15、【解析】
先求出OA的长度,然后利用含30°的直角三角形的性质得到点D的坐标,探索规律,从而得到的坐标即可.【详解】分别过点作y轴的垂线交y轴于点,∵点B在上设∴同理,都是含30°的直角三角形∵,∴同理,点的横坐标为纵坐标为故点的坐标为故答案为:;.【点睛】本题主要考查含30°的直角三角形的性质,找到点的坐标规律是解题的关键.16、0.80【解析】
根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】平均数=(−2+0−1+2+5)÷5=0.8;把这组数据按从大到小的顺序排列是:5,2,0,-1,-2,故这组数据的中位数是:0.故答案为0.8;0.【点睛】本题考查了平均数与中位数的定义,解题的关键是熟练的掌握平均数与中位数的定义.17、1【解析】
先根据平均数求出x,再根据极差定义可得答案.【详解】由题意知=9,解得:x=8,∴这列数据的极差是10-8=1,故答案为1.【点睛】本题主要考查平均数和极差,熟练掌握平均数的计算得出x的值是解题的关键.18、-9【解析】
根据有理数的计算即可求解.【详解】(-2)×3+(-3)=-6-3=-9【点睛】此题主要考查有理数的混合运算,解题的关键是熟知有理数的运算法则.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1);(2)(0≤t≤3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.【解析】
(1)由A、B在抛物线上,可求出A、B点的坐标,从而用待定系数法求出直线AB的函数关系式.(2)用t表示P、M、N的坐标,由等式得到函数关系式.(3)由平行四边形对边相等的性质得到等式,求出t.再讨论邻边是否相等.【详解】解:(1)x=0时,y=1,∴点A的坐标为:(0,1),∵BC⊥x轴,垂足为点C(3,0),∴点B的横坐标为3,当x=3时,y=,∴点B的坐标为(3,),设直线AB的函数关系式为y=kx+b,,解得,,则直线AB的函数关系式(2)当x=t时,y=t+1,∴点M的坐标为(t,t+1),当x=t时,∴点N的坐标为(0≤t≤3);(3)若四边形BCMN为平行四边形,则有MN=BC,
∴,解得t1=1,t2=2,∴当t=1或2时,四边形BCMN为平行四边形,
①当t=1时,MP=,PC=2,∴MC==MN,此时四边形BCMN为菱形,②当t=2时,MP=2,PC=1,∴MC=≠MN,此时四边形BCMN不是菱形.【点睛】本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用.20、(1);(2)这个游戏不公平,理由见解析.【解析】
(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:;(2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P(甲胜)=,P(乙胜)=.∴P(甲胜)≠P(乙胜),故这个游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.21、(1)100,108°;(2)答案见解析;(3)600人.【解析】
(1)先利用QQ计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.【详解】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,∴此次共抽查了:20÷20%=100人.喜欢用QQ沟通所占比例为:,∴QQ的扇形圆心角的度数为:360°×=108°.(2)喜欢用短信的人数为:100×5%=5人喜欢用微信的人数为:100-20-5-30-5=40补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:×100%=40%.∴该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22、(1)证明见解析;(2)1.【解析】
(1)根据切线的性质和平行线的性质解答即可;(2)根据直角三角形的性质和三角函数解答即可.【详解】(1)连接OD,∵OD=OE,∴∠ODE=∠OED.∵直线BC为⊙O的切线,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)连接AD,∵AE是⊙O的直径,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,=sin∠DAF=sin∠BDE=,∴AF=3DF=9,在Rt△CDF中,=sin∠CDF=sin∠BDE=,∴CF=DF=1,∴AC=AF﹣CF=1.【点睛】本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.23、(1)OE=;(2)阴影部分的面积为【解析】
(1)由题意不难证明OE为△ABC的中位线,要求OE的长度即要求BC的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE≌△AFE,进而将要求的阴影部分面积转化为扇形FOC的面积,利用扇形面积公式求解即可.【详解】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∵OE⊥AC,∴OE // BC,又∵点O是AB中点,∴OE是△ABC的中位线,∵∠D=60°,∴∠B=60°,又∵AB=6,∴BC=AB·cos60°=3,∴OE=BC=;(2)连接OC,∵∠D=60°,∴∠AOC=120°,∵OF⊥AC,∴AE=CE,=,∴∠AOF=∠COF=60°,∴△AOF为等边三角形,∴AF=AO=CO,∵在Rt△COE与Rt△AFE中,,∴△COE≌△AFE,∴阴影部分的面积=扇形FOC的面积,∵S扇形FOC==π.∴阴影部分的面积为π.【点睛】本题主要考查圆的性质、全等三角形的判定与性质、中位线的证明以及扇形面积的计算,较为综合.24、(1)证明见解析;(1)①16;②14;【解析】
(1)根据平行四边形的性质得到AD∥BC,AB=DC,AB∥CD于是得到BE=CF,根据全等三角形的性质得到∠A=∠D,根据平行线的性质得到∠A+∠D=180°,由矩形的判定定理即可得到结论;(1)①根据相似三角形的性质得到,求得△GBC的面积为18,于是得到四边形BCFE的面积为16;②根据四边形BCFE的面积为16,列方程得到BC•AB=14,即可得到结论.【详解】(1)证明:∵GB=GC,∴∠GBC=∠GCB,在平行四边形ABCD中,∵AD∥BC,AB=DC,AB∥CD,∴GB-GE=GC-GF,∴BE=CF,在△ABE与△DCF中,,∴△ABE≌△DCF,∴∠A=∠D,∵AB∥CD,∴∠A+∠D=180°,∴∠A=∠D=90°,∴四边形ABCD是矩形;(1)①∵EF∥BC,∴△GFE∽△GBC,∵EF=AD,∴EF=BC,∴,∵△GEF的面积为1,∴△GBC的面积为18,∴四边形BCFE的面积为16,;②∵四边形BCFE的面积为16,∴(EF+BC)•AB=×BC•AB=16,∴BC•AB=14,∴四边形ABCD的面积为14,故答案为:14.【点睛】本题考查了相似三角形的判定和性质,矩形的判定和性质,图形面积的计算,全等三角形的判定和性质,证得△GFE∽△GBC是解题的关键.25、(1)①真;②真;③真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;见解析.【解析】
(1)根据命题的真假判断即可;(2)根据全等三角形的判定和性质进行证明即可.【详解】(1)①等腰三角形两腰上的中线相等是真命题;②等腰三角形两底角的角平分线相等是真命题;③有两条角平分线相等的三角形是等腰三角形是真命题;故答案为真;真;真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;已知:如图,△ABC中,BD,CE分别是AC,BC边上的中线,且BD=CE,求证:△ABC是等腰三角形;证明:连接DE,过点D作DF∥EC,交BC的延长线于点F,∵BD,CE分别是AC,BC边上的中线,∴DE是△ABC的中位线,∴DE∥BC,∵DF∥EC,∴四边形DECF是平行四边形,∴EC=DF,∵BD=CE,∴DF=BD,∴∠DBF=∠DFB,∵DF∥EC,∴∠F=∠ECB,∴∠ECB=∠DBC,在△DBC与△ECB中,∴△DBC≌△ECB,∴EB=DC,∴AB=AC,∴△ABC是等腰三角形.【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质;证明的步骤是:先根据题意画出图形,再根据图形写出已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论