人教版数学八年级下册期末测试卷3份含答案_第1页
人教版数学八年级下册期末测试卷3份含答案_第2页
人教版数学八年级下册期末测试卷3份含答案_第3页
人教版数学八年级下册期末测试卷3份含答案_第4页
人教版数学八年级下册期末测试卷3份含答案_第5页
已阅读5页,还剩73页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版八年级下册期末测试卷3份含答案期末测试(1)一、选择题1.如果有意义,那么x的取值范围是()A.x>1 B.x≥1 C.x≤1 D.x<12.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为6和9,则b的面积为()A.9 B.12 C.15 D.203.下列计算错误的是()A. B. C. D.4.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能比较5.一家鞋店对上周某一品牌女鞋的销售量统计如下:尺码/厘米2222.52323.52424.525销售量/双3558431该鞋店决定本周进该品牌女鞋时多进一些尺码为23.5厘米的鞋,影响鞋店决策的统计量是()A.平均数 B.众数 C.中位数 D.方差6.在矩形ABCD中,AC和BD交于点O,∠AOB=60°,AE平分∠BAD交BC于E,则∠BOE的度数为()A.60° B.65° C.70° D.75°7.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图象上,则菱形的面积为()A.6 B.5 C.4 D.3二、填空题8.计算:=;×=;)=;=.9.一组数据按从小到大排列为1,2,4,x,6,9,这组数据的中位数为5,那么这组数据的众数为.10.如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是度.11.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是cm.12.若+y2﹣4y+4=0,则xy的值为.13.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是.14.如图是一张直角三角形纸片,直角边AC=6,斜边AB=10,现将△ABC折叠,使点B与点A重合,折痕为DE,则AD=.15.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC.其中正确结论的序号是.三、解答题16.如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.(写出一种即可)关系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.已知:在四边形ABCD中,,;求证:四边形ABCD是平行四边形.17.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.18.某校要从小王和小李两名同学中挑选一人参加全国数学竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:次数成绩(分)姓名12345小王60751009075小李7090808080根据上表解答下列问题:(1)完成下表:姓名极差(分)平均成绩(分)中位数(分)众数(分)方差小王40807575190小李(2)在这五次测试中,成绩比较稳定的同学是谁若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.19.某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水果的造价为30元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?20.如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行驶8千米时,收费应为元;(2)从图象上你能获得哪些信息(请写出2条);①;②;(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式.21.如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C′处,折痕DE交BC于点E,连接C′E.(1)求证:四边形CDC′E是菱形;(2)若BC=CD+AD,试判断四边形ABED的形状,并加以证明.答案1.如果有意义,那么x的取值范围是()A.x>1 B.x≥1 C.x≤1 D.x<1【考点】二次根式有意义的条件.【专题】选择题.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:由题意得:x﹣1≥0,解得:x≥1.故选B.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为6和9,则b的面积为()A.9 B.12 C.15 D.20【考点】勾股定理;全等三角形的判定与性质;正方形的性质.【专题】选择题.【分析】根据已知及全等三角形的判定可得到△ABC≌△CDE,从而得到b的面积=a的面积+c的面积【解答】解:如图∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°∴∠ACB=∠DEC.∴在△ABC与△CDE中,,∴△ABC≌△CDE(AAS),∴BC=DE,∴如图,根据勾股定理的几何意义,b的面积=a的面积+c的面积∴b的面积=a的面积+c的面积=6+9=15.故选C.【点评】本题考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.3.下列计算错误的是()A. B. C. D.【考点】二次根式的加减、乘除.【专题】选择题.【分析】结合选项分别进行二次根式的除法运算、乘法运算、加减运算,然后选择正确选项.【解答】解:A、×=7,原式计算正确,故本选项错误;B、÷=,原式计算正确,故本选项错误;C、+=8,原式计算正确,故本选项错误;D、3﹣=2,原式计算错误,故本选项错误.故选D.【点评】本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的加减法则和乘除法则.4.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能比较【考点】一次函数的性质.【专题】选择题.【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【解答】解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.5.一家鞋店对上周某一品牌女鞋的销售量统计如下:尺码/厘米2222.52323.52424.525销售量/双3558431该鞋店决定本周进该品牌女鞋时多进一些尺码为23.5厘米的鞋,影响鞋店决策的统计量是()A.平均数 B.众数 C.中位数 D.方差【考点】数据的分析.【专题】选择题.【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【解答】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的是众数;故选B.【点评】此题主要考查统计的有关知识,熟练掌握平均数、中位数、众数、方差的意义是解题的关键.6.在矩形ABCD中,AC和BD交于点O,∠AOB=60°,AE平分∠BAD交BC于E,则∠BOE的度数为()A.60° B.65° C.70° D.75°【考点】矩形的性质.【专题】选择题.【分析】由矩形ABCD,得到OA=OB,根据AE平分∠BAD,得到等边三角形OAB,推出AB=OB,求出∠OAB、∠OBC的度数,根据平行线的性质和等角对等边得到OB=BE,根据三角形的内角和定理即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AC=BD,OA=OC,OB=OD,∠BAD=90°,∴OA=OB,∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°=∠AEB,∴AB=BE,∵∠AOB=60°,∴△BAO是等边三角形,∴AB=OB,∠ABO=60°,∴∠OBC=90°﹣60°=30°,∵AB=OB=BE,∴∠BOE=∠BEO=(180°﹣30°)=75°.故选D.【点评】本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,平行线的性质,角平分线的性质,等腰三角形的判定等知识点,解此题的关键是求出∠OBC的度数和求OB=BE.7.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图象上,则菱形的面积为()A.6 B.5 C.4 D.3【考点】反比例函数系数k的几何意义;菱形的性质.【专题】选择题.【分析】连接AC交OB于D,由菱形的性质可知AC⊥OB.根据反比例函数y=中k的几何意义,得出△AOD的面积=1.5,从而求出菱形OABC的面积=△AOD的面积的4倍.【解答】解:如图,连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A在反比例函数y=的图象上,∴△AOD的面积=×3=1.5,∴菱形OABC的面积=4×△AOD的面积=6.故选A.【点评】本题主要考查菱形的性质及反比例函数的比例系数k的几何意义.反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.8.计算:=;×=;)=;=.【考点】二次根式的混合运算.【专题】填空题.【分析】利用二次根式的除法法则运算;利用二次根式的乘除法则运算×=;利用分母有理化计算);利用二次根式的除法法则运算.【解答】解:==﹣;×==2;)==3+2;=.故答案为﹣,2,3﹣2,.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.9.一组数据按从小到大排列为1,2,4,x,6,9,这组数据的中位数为5,那么这组数据的众数为.【考点】众数;中位数.【专题】填空题.【分析】先根据中位数的定义求出x的值,再根据众数的定义求出答案.【解答】解:∵这组数据按从小到大排列为1,2,4,x,6,9,又∵这组数据的中位数为5,∴(4+x)÷2=5,解得:x=6,∴这组数据为1,2,4,6,6,9,∴这组数据的众数为6;故答案为:6.【点评】此题考查了中位数和众数,解题的关键是先根据中位数的定义求出x的值,再找众数.10.如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是度.【考点】平行四边形的性质.【专题】填空题.【分析】利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.【解答】解:在平行四边形ABCD中,∠A=130°,∴∠BCD=∠A=130°,∠D=180°﹣130°=50°,∵DE=DC,∴∠ECD=(180°﹣50°)=65°,∴∠ECB=130°﹣65°=65°.故答案为65°.【点评】本题主要考查平行四边形对角相等和邻角互补的性质,熟练掌握性质是解题的关键.11.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是cm.【考点】菱形的性质.【专题】填空题.【分析】利用菱形的性质,得BD平分∠ABC,利用角平分线的性质,得结果.【解答】解:∵四边形ABCD是菱形,∴BD平分∠ABC,∵PE⊥AB,PE=4cm,∴点P到BC的距离等于4cm,故答案是:4.【点评】本题主要考查了菱形的性质和角平分线的性质,运用角的平分线上的点到角的两边的距离相等是解答此题的关键.12.若+y2﹣4y+4=0,则xy的值为.【考点】二次根式的性质.【专题】填空题.【分析】首先配方,进而利用二次根式的性质以及偶次方的性质,进而得出关于x,y的方程组求出即可.【解答】解:∵+y2﹣4y+4=0,∴+(y﹣2)2=0,∴,解得:,∴xy的值为:4.故答案为:4.【点评】此题主要考查了配方法应用以及偶次方的性质和二次根式的性质等知识,正确配方是解题关键.13.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是.【考点】方差;算术平均数.【专题】填空题.【分析】先由平均数计算出a的值,再计算方差.一般地设n个数据,x1,x2,…xn的平均数为,=(x1+x2+…+xn),则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].【解答】解:a=4×5﹣2﹣3﹣5﹣6=4,s2=[(2﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(6﹣4)2]=2.故填2.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.如图是一张直角三角形纸片,直角边AC=6,斜边AB=10,现将△ABC折叠,使点B与点A重合,折痕为DE,则AD=.【考点】翻折变换(折叠问题);勾股定理.【专题】填空题.【分析】利用翻折变换的性质得出AD=BD,再利用在Rt△ACD中运用勾股定理就可以求出AD的长.【解答】解:设AD=xcm,则BD=AD=xcm.∵将一张直角△ABC纸片折叠,使点B与点A重合,折痕为DE,CD=BC﹣BD=(8﹣x)cm,在Rt△ACD中,AD2=CD2+AC2,则x2=(8﹣x)2+62,64+x2﹣16x+36=x2,整理得:16x=100,解得:x=,即AD的长为.故答案为:.【点评】本题考查了折叠的性质以及勾股定理,解题的关键是注意数形结合思想与方程思想的应用,注意折叠中的对应关系.15.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC.其中正确结论的序号是.【考点】正方形的性质;全等三角形的判定与性质.【专题】填空题.【分析】根据正方形的性质与正方形关于对角线对称可得所给选项的正误.【解答】解:①正确,连接PC,可得PC=EF,PC=PA,∴AP=EF;②正确;延长AP,交EF于点N,则∠EPN=∠BAP=∠PCE=∠PFE,可得AP⊥EF;③错误,由于P是动点,所以△APD一定是等腰三角形错误;④正确;∠PFE=∠PCE=∠BAP;⑤正确;PD=PF=CE;故答案为:①②④⑤.【点评】综合考查了正方形的性质;充分利用正方形是轴对称图形可得相关验证.16.如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.(写出一种即可)关系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.已知:在四边形ABCD中,,;求证:四边形ABCD是平行四边形.【考点】平行四边形的判定.【专题】填空题.【分析】根据平行四边形的判定方法就可以组合出不同的结论,然后即可证明.其中解法一是证明两组对角相等的四边形是平行四边形;解法二是证明两组对边平行的四边形是平行四边形;解法三是证明一组对边平行且相等的四边形是平行四边形;解法四是证明两组对角相等的四边形是平行四边形.【解答】解:已知:①③,①④,②④,③④均可,其余均不可以.解法一:已知:在四边形ABCD中,①AD∥BC,③∠A=∠C,求证:四边形ABCD是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.解法二:已知:在四边形ABCD中,①AD∥BC,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,又∵AD∥BC,∴四边形ABCD是平行四边形;解法三:已知:在四边形ABCD中,②AB=CD,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,又∵AB=CD,∴四边形ABCD是平行四边形;解法四:已知:在四边形ABCD中,③∠A=∠C,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,∴∠A+∠D=180°,又∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.17.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【考点】一次函数的性质.【专题】解答题.【分析】(1)根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;(2)根据题意可得m﹣3=﹣2,解方程即可;(3)根据两函数图象平行,k值相等可得2m+1=3;(4)根据一次函数的性质可得2m+1<0,再解不等式即可.【解答】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m<﹣.【点评】此题主要考查了一次函数的性质,关键是掌握与y轴的交点就是y=kx+b中,b的值,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.18.某校要从小王和小李两名同学中挑选一人参加全国数学竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:次数成绩(分)姓名12345小王60751009075小李7090808080根据上表解答下列问题:(1)完成下表:姓名极差(分)平均成绩(分)中位数(分)众数(分)方差小王40807575190小李(2)在这五次测试中,成绩比较稳定的同学是谁若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.【考点】方差;算术平均数;中位数;众数;极差.【专题】解答题.【分析】(1)根据平均数、中位数、众数、方差、极差的概念求得相关的数;(2)方差反映数据的离散程度,所以方差越小越稳定,应此小李的成绩稳定;小王的优秀率=,小李的优秀率=;(3)选谁参加比赛的答案不唯一,小李的成绩稳定,所以获奖的几率大;小王的90分以上的成绩好,则小王获一等奖的机会大.【解答】解:(1)小李的平均分==80,中位数=80,众数=80,方差==40,极差=最大的数﹣最小的数=90﹣70=20;姓名极差(分)平均成绩(分)中位数(分)众数(分)方差小王40807575190小李2080808040(2)在这五次考试中,成绩比较稳定的是小李,小王的优秀率=×100%=40%,小李的优秀率=×100%=80%;(3)方案一:我选小李去参加比赛,因为小李的优秀率高,有4次得80分以上,成绩比较稳定,获奖机会大.方案二:我选小王去参加比赛,因为小王的成绩获得一等奖的机率较高,有2次90分以上(含90分),因此有可能获得一等奖.(注:答案不唯一,考生可任选其中一人,只要分析合理,都给满分.若选两人都去参加,不合题意不给分).【点评】本题考查了方差、中位数及众数的知识,属于基础题,一些同学对方差的公式记不准确或粗心而出现错误.19.某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水果的造价为30元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?【考点】勾股定理的应用.【专题】解答题.【分析】当CD为斜边上的高时,CD最短,从而水渠造价最低,根据已知条件可将CD的长求出,在Rt△ACD中运用勾股定理求出AD的长,进而可得出结论.【解答】解:当CD为斜边上的高时,CD最短,从而水渠造价最低,∵∠ACB=90°,AC=80米,BC=60米,∴AB===100米,∵CD•AB=AC•BC,即CD•100=80×60,∴CD=48米,∴在Rt△ACD中AC=80,CD=48,∴AD===64米,48×30=1440元.所以,D点在距A点64米的地方,水渠的造价最低,其最低造价为1440元.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.20.如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行驶8千米时,收费应为元;(2)从图象上你能获得哪些信息(请写出2条);①;②;(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式.【考点】函数图象的实际应用.【专题】解答题.【分析】(1)由图象即可确定行驶8千米时的收费;(2)此题答案不唯一,只要合理就行;(3)由于x≥3时,直线过点(3,5)、(8,11),设解析式为设y=kx+b,利用待定系数法即可确定解析式.【解答】解:(1)当行驶8千米时,收费应为11元;(2)①行驶路程小于或等于3千米时,收费是5元;②超过3千米后每千米收费1.2元;(3)由于x≥3时,直线过点(3,5)、(8,11),设解析式为设y=kx+b,则,解得k=1.2,b=1.4,则解析式为y=1.2x+1.4.【点评】本题主要考查从一次函数的图象上获取信息的能力,所以正确理解图象的性质是解题的关键.21.如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C′处,折痕DE交BC于点E,连接C′E.(1)求证:四边形CDC′E是菱形;(2)若BC=CD+AD,试判断四边形ABED的形状,并加以证明.【考点】翻折变换(折叠问题);平行四边形的判定;菱形的判定.【专题】解答题.【分析】(1)依题意∠C′DE=∠CDE,CD=C′D,CE=C′E,又AD∥BC,∴∠C′DE=∠DEC,∴∠DEC=∠CDE,∴CD=CE,则四边相等,可得四边形CDC′E是菱形;(2)四边形ABED为平行四边形,由题意易证明AD=BE,又AD∥BC,可得AD∥BE,∴四边形ABED为平行四边形可证明AD与BE平行且相等.【解答】(1)证明:依题意∠C′DE=∠CDE,CD=C′D,CE=C′E,(1分)∵AD∥BC,∴∠C′DE=∠DEC.∴∠DEC=∠CDE.∴CD=CE.(3分)故CD=CE=C′D=C′E,四边形CDC′E是菱形.(2)解:四边形ABED为平行四边形.证明:∵BC=CD+AD,又CD=CE,∴BC=CE+AD.又BC=CE+BE,∴AD=BE.又AD∥BC,可得AD∥BE.∴四边形ABED为平行四边形.【点评】本题主要考查四边形的知识,考查学生的论证能力及思维逻辑能力.期末测试(2)一、选择题1.若有意义,则m能取的最小整数值是()A.m=0 B.m=1 C.m=2 D.m=32.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,, B.3,4,5 C.5,12,13 D.2,2,33.下列二次根式中属于最简二次根式的是()A. B. C. D.4.函数y=2x﹣5的图象经过()A.第一、三、四象限 B.第一、二、四象限C.第二、三、四象限 D.第一、二、三象限5.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4 B. C.3 D.56.如图,正方形ABCD中,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是()A.16 B.18 C.19 D.217.某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是()A.25 B.26 C.27 D.288.已知P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x﹣1的图象上的两个点,则y1,y2的大小关系是()A.y1=y2 B.y1<y2 C.y1>y2 D.不能确定9.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:队员1队员2队员3队员4平均数(秒)51505150方差s2(秒2)3.53.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.队员1 B.队员2 C.队员3 D.队员410.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13 B.14 C.15 D.1611.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm12.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.3二、填空题13.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是.14.函数中,自变量x的取值范围是.15.计算=.16.矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在某一面着色(如图),则着色部分的面积为.17.如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x=.三、解答题18.当x=时,求x2﹣x+1的值.19.一艘轮船以16海里/时的速度离开港口(如图),向北偏东40°方向航行,另一艘轮船在同时以12海里/时的速度向北偏西一定的角度的航向行驶,已知它们离港口一个半小时后相距30海里(即BA=30),问另一艘轮船的航行的方向是北偏西多少度?20.已知:如图,点E,F分别为▱ABCD的边BC,AD上的点,且∠1=∠2.求证:AE=CF.21.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校本学年开展了读书活动,在这次活动中,八年级(1)班40名学生读书册数的情况如表:读书册数45678人数(人)6410128根据表中的数据,求:(1)该班学生读书册数的平均数;(2)该班学生读书册数的中位数.22.世界上大部分国家都使用摄氏温度(℃),但美国、英国等国家的天气预报使用华氏温度(℉).两种计量之间有如表对应:摄氏温度x(℃)…0510152025…华氏温度y(℉)…324150596877…已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.(1)求该一次函数的表达式;(2)当华氏温度﹣4℉时,求其所对应的摄氏温度.23.如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.24.已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车离出发地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)它们出发小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.答案1.若有意义,则m能取的最小整数值是()A.m=0 B.m=1 C.m=2 D.m=3【考点】二次根式有意义的条件.【专题】选择题.【分析】根据二次根式的性质,被开方数大于等于0,即可求解.【解答】解:由有意义,则满足3m﹣1≥0,解得m≥,即m≥时,二次根式有意义.则m能取的最小整数值是m=1.故选B.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,, B.3,4,5 C.5,12,13 D.2,2,3【考点】勾股定理的逆定理.【专题】选择题.【分析】欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+()2=3=()2,故是直角三角形,故错误;B、42+32=25=52,故是直角三角形,故错误;C、52+122=169=132,故是直角三角形,故错误;D、22+22=8≠32,故不是直角三角形,故正确.故选D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.下列二次根式中属于最简二次根式的是()A. B. C. D.【考点】最简二次根式.【专题】选择题.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.4.函数y=2x﹣5的图象经过()A.第一、三、四象限 B.第一、二、四象限C.第二、三、四象限 D.第一、二、三象限【考点】一次函数的性质.【专题】选择题.【分析】根据一次函数的性质解答.【解答】解:在y=2x﹣5中,∵k=2>0,b=﹣5<0,∴函数过第一、三、四象限,故选A.【点评】本题考查了一次函数的性质,能根据k和b的值确定函数所过象限是解题的关键.5.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4 B. C.3 D.5【考点】矩形的性质.【专题】选择题.【分析】先由矩形的性质得出OA=OB,再证明△AOB是等边三角形,得出AB=OB=4即可.【解答】解:∵四边形ABCD是矩形,∴OA=AC,OB=BD=4,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4;故选A.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.6.如图,正方形ABCD中,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是()A.16 B.18 C.19 D.21【考点】勾股定理;正方形的性质.【专题】选择题.【分析】由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD﹣S△ABE求面积.【解答】解:∵AE垂直于BE,且AE=3,BE=4,∴在Rt△ABE中,AB2=AE2+BE2=25,∴S阴影部分=S正方形ABCD﹣S△ABE=AB2﹣×AE×BE=25﹣×3×4=19.故选C.【点评】本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解.7.某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是()A.25 B.26 C.27 D.28【考点】众数;折线统计图.【专题】选择题.【分析】一组数据中出现次数最多的数据叫做众数,依此求解即可.【解答】解:由图形可知,25出现了3次,次数最多,所以众数是25.故选A.【点评】本题考查了众数的概念,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.8.已知P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x﹣1的图象上的两个点,则y1,y2的大小关系是()A.y1=y2 B.y1<y2 C.y1>y2 D.不能确定【考点】一次函数的性质.【专题】选择题.【分析】根据P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x﹣1的图象上的两个点,由﹣3<2,结合一次函数y=﹣x﹣1在定义域内是单调递减函数,判断出y1,y2的大小关系即可.【解答】解:∵P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x﹣1的图象上的两个点,且﹣3<2,∴y1>y2.故选C.【点评】此题主要考查了一次函数图象上点的坐标特征,要熟练掌握.9.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:队员1队员2队员3队员4平均数(秒)51505150方差s2(秒2)3.53.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.队员1 B.队员2 C.队员3 D.队员4【考点】方差;加权平均数.【专题】选择题.【分析】据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为队员1和2的方差最小,但队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定.故选B.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13 B.14 C.15 D.16【考点】平行四边形的性质.【专题】选择题.【分析】先证明四边形ABEF是平行四边形,再证明邻边相等即可得出四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OA=OE,OB=OF=BF=6,∴OA===8,∴AE=2OA=16;故选D.【点评】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.11.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm【考点】菱形的性质;三角形中位线定理.【专题】选择题.【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点评】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.12.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.3【考点】一次函数的性质.【专题】选择题.【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【解答】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0;故①正确∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故②③错误.故选B.【点评】本题考查了两条直线相交问题,难点在于根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.13.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是.【考点】算术平均数.【专题】填空题.【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据x1,x2,x3,x4,x5的和,然后再用平均数的定义求新数据的平均数.【解答】解:一组数据x1,x2,x3,x4,x5的平均数是2,有(x1+x2+x3+x4+x5)=2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是(3x1﹣2+3x2﹣2+3x3﹣2+3x4﹣2+3x5﹣2)=4.故答案为4.【点评】本题考查的是样本平均数的求法及运用,即平均数公式:.14.函数中,自变量x的取值范围是.【考点】函数自变量的取值范围.【专题】填空题.【分析】根据二次根式有意义的条件是a≥0,即可求解.【解答】解:根据题意得:x﹣3≥0,解得:x≥3.故答案是:x≥3.【点评】本题考查了函数自变量的取值范围的求法,求函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.计算=.【考点】二次根式的加减法.【专题】填空题.【分析】根据二次根式的加减法运算法则,先将各个二次根式化简为最简二次根式,然后将被开方数相同的二次根式合并.【解答】解:原式==3.【点评】二次根式的加减法运算一般可以分三步进行:①将每一个二次根式化成最简二次根式;②找出其中的同类二次根式;③合并同类二次根式.16.矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在某一面着色(如图),则着色部分的面积为.【考点】翻折变换(折叠问题);矩形的性质.【专题】填空题.【分析】根据折叠的性质得到CG=AD=4,GF=DF=CD﹣CF,∠G=90°,根据勾股定理求出FC,根据三角形的面积公式计算即可.【解答】解:由折叠的性质可得:CG=AD=4,GF=DF=CD﹣CF,∠G=90°,则△CFG为直角三角形,在Rt△CFG中,FC2=CG2+FG2,即FC2=42+(8﹣FC)2,解得:FC=5,∴△CEF的面积=×FC×BC=10,△BCE的面积=△CGF的面积=×FG×GC=6,则着色部分的面积为:10+6+6=22,故答案为:22.【点评】本题考查的是翻转变换的性质、勾股定理的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.17.如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x=.【考点】一次函数与一元一次方程.【专题】填空题.【分析】方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标.【解答】解:由图知:直线y=kx+b与x轴交于点(﹣4,0),即当x=﹣4时,y=kx+b=0;因此关于x的方程kx+b=0的解为:x=﹣4.故答案为:﹣4【点评】本题主要考查了一次函数与一次方程的关系,关键是根据方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标解答.18.当x=时,求x2﹣x+1的值.【考点】二次根式的混合运算.【专题】解答题.【分析】先根据x=,整理成x=+1,再把要求的式子进行配方,然后把x的值代入,即可得出答案.【解答】解:∵x=∴x=+1,∴x2﹣x+1=(x﹣)2+=(+1﹣)2+=3.【点评】本题考查的是二次根式的化简求值,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.19.一艘轮船以16海里/时的速度离开港口(如图),向北偏东40°方向航行,另一艘轮船在同时以12海里/时的速度向北偏西一定的角度的航向行驶,已知它们离港口一个半小时后相距30海里(即BA=30),问另一艘轮船的航行的方向是北偏西多少度?【考点】勾股定理的应用;方向角.【专题】解答题.【分析】先根据题意得出OA及OB的长,再根据勾股定理的逆定理判断出△OAB的形状,进而可得出结论.【解答】解:如图.由题意可知,OA=16+16×=24(海里),OB=12+12×=18(海里),AB=30海里,∵242+182=302,即OA2+OB2=AB2,∴△OAB是直角三角形,∵∠AOD=40°,∴∠BOD=90°﹣40°=50°,即另一艘轮船的航行的方向是北偏西50度.【点评】本题考查的是勾股定理的应用,根据题意判断出△AOB是直角三角形是解答此题的关键.20.已知:如图,点E,F分别为▱ABCD的边BC,AD上的点,且∠1=∠2.求证:AE=CF.【考点】平行四边形的性质.【专题】解答题.【分析】先由平行四边形的对边平行得出AD∥BC,再根据平行线的性质得到∠DAE=∠1,而∠1=∠2,于是∠DAE=∠2,根据平行线的判定得到AE∥CF,由两组对边分别平行的四边形是平行四边形得到四边形AECF是平行四边形,从而根据平行四边形的对边相等得到AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠1,∵∠1=∠2,∴∠DAE=∠2,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形,∴AE=CF.【点评】本题考查了平行四边形的判定与性质,平行线的判定与性质,难度适中.证明出AE∥CF是解题的关键.21.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校本学年开展了读书活动,在这次活动中,八年级(1)班40名学生读书册数的情况如表:读书册数45678人数(人)6410128根据表中的数据,求:(1)该班学生读书册数的平均数;(2)该班学生读书册数的中位数.【考点】中位数;加权平均数.【专题】解答题.【分析】(1)根据平均数=,求出该班同学读书册数的平均数;(2)将图表中的数据按照从小到大的顺序排列,再根据中位数的概念求解即可.【解答】解:(1)该班学生读书册数的平均数为:=6.3(册),答:该班学生读书册数的平均数为6.3册.(2)将该班学生读书册数按照从小到大的顺序排列,由图表可知第20名和第21名学生的读书册数分别是6册和7册,故该班学生读书册数的中位数为:=6.5(册).答:该班学生读书册数的中位数为6.5册.【点评】本题考查了中位数和平均数的知识,解答本题的关键在于熟练掌握求解平均数的公式和中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.22.世界上大部分国家都使用摄氏温度(℃),但美国、英国等国家的天气预报使用华氏温度(℉).两种计量之间有如表对应:摄氏温度x(℃)…0510152025…华氏温度y(℉)…324150596877…已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.(1)求该一次函数的表达式;(2)当华氏温度﹣4℉时,求其所对应的摄氏温度.【考点】用待定系数法求一次函数的解析式.【专题】解答题.【分析】(1)设y=kx+b,利用图中的两个点,建立方程组,解之即可;(2)令y=﹣4,求出x的值,再比较即可.【解答】解:(1)设一次函数表达式为y=kx+b(k≠0).由题意,得解得∴一次函数的表达式为y=1.8x+32.(2)当y=﹣4时,代入得﹣4=1.8x+32,解得x=﹣20.∴华氏温度﹣4℉所对应的摄氏温度是﹣20℃.【点评】本题考查一次函数的应用,只需仔细分析表中的数据,利用待定系数法即可解决问题.23.如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.【考点】矩形的性质;菱形的判定与性质.【专题】解答题.【分析】(1)根据平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(2)解直角三角形求出BC=2.AB=DC=2,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=1,求出OE=2OF=2,求出菱形的面积即可.【解答】(1)证明:∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,∵矩形ABCD,∴AC=BD,OC=AC,OD=BD,∴OC=OD,∴四边形OCED是菱形;(2)解:在矩形ABCD中,∠ABC=90°,∠BAC=30°,AC=4,∴BC=2,∴AB=DC=2,连接OE,交CD于点F,∵四边形ABCD为菱形,∴F为CD中点,∵O为BD中点,∴OF=BC=1,∴OE=2OF=2,∴S菱形OCED=×OE×CD=×2×2=2.【点评】本题考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.24.已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车离出发地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)它们出发小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.【考点】函数图象的实际应用.【专题】解答题.【分析】(1)由图知,该函数关系在不同的时间里表现成不同的关系,需分段表达.当行驶时间小于3时是正比例函数;当行使时间大于3小时小于小时是一次函数.可根据待定系数法列方程,求函数关系式.(2)4.5小时大于3小时,代入一次函数关系式,计算出乙车在用了小时行使的距离.从图象可看出求乙车离出发地的距离y(千米)与行驶时间x(小时)之间是正比例函数关系,用待定系数法可求解.(3)两者相向而行,相遇时甲、乙两车行使的距离之和为300千米,列出方程解答,由题意有两次相遇.【解答】解:(1)当0≤x≤3时,是正比例函数,设为y=kx,x=3时,y=300,代入解得k=100,所以y=100x;当3<x≤时,是一次函数,设为y=kx+b,代入两点(3,300)、(,0),得解得,所以y=540﹣80x.综合以上得甲车离出发地的距离y与行驶时间x之间的函数关系式为:y=.(2)当x=时,y甲=540﹣80×=180;乙车过点(,180),y乙=40x.(0≤x≤)(3)由题意有两次相遇.①当0≤x≤3,100x+40x=300,解得x=;②当3<x≤时,(540﹣80x)+40x=300,解得x=6.综上所述,两车第一次相遇时间为第小时,第二次相遇时间为第6小时.【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.此题中需注意的是相向而行时相遇的问题.期末测试(3)一、选择题1.下列计算正确的是()A. B. C.4 D.32.一组数据4,5,7,7,8,6的中位数和众数分别是()A.7,7 B.7,6.5 C.6.5,7 D.5.5,73.已知下列三角形的各边长:①3、4、5,②5、12、13,③3、4、6,④5、11、12其中直角三角形有()A.4个 B.3个 C.2个 D.1个4.下列四个点,在正比例函数y=x的图象上的点是()A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2)5.一次函数y=kx+b的图象如图所示,则k、b的值为()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<06.如图,在▱ABCD中,AB=5,BC=3,且DB⊥BC,则四边形ABCD的面积为()A.6 B.12 C.18 D.247.下列命题中,真命题是()A.有两边相等的平行四边形是菱形B.对角线垂直的四边形是菱形C.四个角相等的菱形是正方形D.两条对角线相等的四边形是矩形8.如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为()A.2.4cm B.4.8cm C.5cm D.9.6cm9.甲乙两人在跳远练习中,6次成绩分别为(单位:米):甲:3.83.83.93.94.04.0;乙:3.83.93.93.93.94.0.则这次跳远练习中,甲乙两人成绩方差的大小关系是()A.> B.<C.= D.无法确定10.从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是()A.平均数 B.中位数 C.众数 D.方差11.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程y千米与行进时间t的函数图象的示意图,同学们画出的示意图如下,你认为正确的是()A. B. C. D.12.关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1) B.图象经过一、二、三象限C.y随x的增大而增大 D.当x>时,y<013.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为()A.3 B.4 C.5 D.614.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A. B. C. D.15.如图,已知在正方形ABCD中,连接BD并延长至点E,连接CE,F、G分别为BE,CE的中点,连接FG.若AB=6,则FG的长度为()A.3 B.4 C.5 D.616.如图,点O(0,0),A(0,1)是正方形的两个顶点,以对角线OA1为边作正方形OAA1B再以正方形OA1A2B1的对角线OA2作正方形OA2A3B2,…,依此规律,则点A8的坐标是()A.(﹣8,0) B.(0,8) C.(0,8) D.(0,16)二、填空题17.在函数y=+5中,自变量x的取值范围是.18.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是.19.如图,在直线y=x+1上取一点A1,以O、A1为顶点作等一个等边三角形OA1B1,再在直线上取一点A2,以A2、B1为顶点作第二个等边三角形A2B1B2,…,一直这样做下去,则B1点的坐标为,第10个等边三角形的边长为.三、解答题20.计算:(1)2××+(2)已知x=2﹣,求(7+4)x2+(2+)x+的值.21.一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?22.已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:EB∥DF.23.已知y关于x的一次函数y=(2m2﹣32)x3﹣(n﹣3)x2+(m﹣n)x+m+n.(1)若该一次函数的y值随x的值的增大而增大,求该一次函数的表达式,并在如图所示的平面直角坐标系中画出该一次函数的图象;(2)若该一次函数的图象经过点(﹣2,13),求该函数的图象与坐标轴围成的三角形的面积.24.小明、小亮都是射箭爱好者,他们在相同的条件下各射箭5次,每次射箭的乘积情况如表:射箭次数第1次第2次第3次第4次第5次小明成绩(环)67778小亮成绩(环)48869(1)请你根据表中的数据填写下表:姓名平均数(环)众数(环)方差小明70.4小亮8(2)从平均数和方差相结合看,谁的成绩好些?25.某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?26.如图所示,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤25).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:四边形AEFD是平行四边形;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.答案1.下列计算正确的是()A. B. C.4 D.3【考点】二次根式的加减、乘除运算.【专题】选择题.【分析】直接利用二次根式的混合运算法则分别计算得出答案.【解答】解:A、+无法计算,故此选项错误;B、÷=3,正确;C、4﹣3=,故此选项错误;D、3×2=12,故此选项错误;故选B.【点评】此题主要考查了二次根式的混合运算,正确掌握二次根式运算法则是解题关键.2.一组数据4,5,7,7,8,6的中位数和众数分别是()A.7,7 B.7,6.5 C.6.5,7 D.5.5,7【考点】众数;中位数.【专题】选择题.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为4,5,6,7,7,8,中位数是=6.5;7出现了2次,出现的次数最多,则众数是7;故选C.【点评】本题考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数;众数是一组数据中出现次数最多的数.3.已知下列三角形的各边长:①3、4、5,②5、12、13,③3、4、6,④5、11、12其中直角三角形有()A.4个 B.3个 C.2个 D.1个【考点】勾股定理的逆定理.【专题】选择题.【分析】欲判断是否可以构成直角三角形,只需验证两小边的平方和是否等于最长边的平方,即可得出答案.【解答】解:①32+42=52,能构成直角三角形;②52+122=132,能构成直角三角形;③32+42≠62,不能构成直角三角形;④52+112=122,能构成直角三角形;其中直角三角形有2个.故选C.【点评】此题主要考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.4.下列四个点,在正比例函数y=x的图象上的点是()A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2)【考点】正比例函数的图象.【专题】选择题.【分析】分别把各点坐标代入正比例函数的解析式进行一一验证即可.【解答】解:A、∵当x=2时,y=×2=≠5,∴此点不在正比例函数y=x图象上,故本选项错误;B、∵当x=5时,y=×5=2,∴此点在正比例函数y=x图象上,故本选项正确;C、∵当x=2时,y=×2=≠﹣5,∴此点不在正比例函数y=x图象上,故本选项错误;D、∵当x=5时,y=×5=2≠﹣2,∴此点不在正比例函数y=x图象上,故本选项错误.故选B.【点评】本题考查的是正比例函数图象上点的坐标特点,即正比例函数图象上各点的坐标特点一定适合此函数的解析式.5.一次函数y=kx+b的图象如图所示,则k、b的值为()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】一次函数的性质.【专题】选择题.【分析】先根据一次函数y=kx+b的图象过一、三象限可知k>0,由函数的图象与y轴的正半轴相交可知b>0,进而可得出结论.【解答】解:∵一次函数y=kx+b的图象过一、三象限,∴k>0,∵函数的图象与y轴的正半轴相交,∴b>0.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象过一、三象限,当b>0时,函数图象与y轴的正半轴相交.6.如图,在▱ABCD中,AB=5,BC=3,且DB⊥BC,则四边形ABCD的面积为()A.6 B.12 C.18 D.24【考点】平行四边形的性质.【专题】选择题.【分析】由勾股定理求出BD,即可求出平行四边形的面积.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=5,∵BC=3,且DB⊥BC,∴BD==4,∴平行四边形ABCD的面积=BC•BD=3×4=12;故选B.【点评】本题考查了平行四边形的性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出BD是解决问题的关键.7.下列命题中,真命题是()A.有两边相等的平行四边形是菱形B.对角线垂直的四边形是菱形C.四个角相等的菱形是正方形D.两条对角线相等的四边形是矩形【考点】菱形、矩形和正方形判定.【专题】选择题.【分析】利用菱形的判定定理、矩形的判定定理及正方形的判定定理分别判断后即可确定正确的选项.【解答】解:A、邻边相等的平行四边形是菱形,故错误,是假命题;B、对角线垂直的平行四边形是菱形,故错误,是假命题;C、四个角相等的菱形是正方形,故正确,是真命题;D、两条对角线相等的平行四边形是矩形,故错误,是假命题,故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解菱形的判定定理、矩形的判定定理及正方形的判定定理,属于基础题,难度不大.8.如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为()A.2.4cm B.4.8cm C.5cm D.9.6cm【考点】菱形的性质.【专题】选择题.【分析】先由菱形的性质和勾股定理求出边长,再根据菱形面积的两种计算方法,即可求出菱形的高.【解答】解:如图所示:∵四边形ABCD是菱形,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∵菱形ABCD的面积=AB•DE=AC•BD=×8×6=24,∴DE==4.8;故选B.【点评】本题考查了菱形的性质、勾股定理以及菱形面积的计算方法;熟练掌握菱形的性质,运用勾股定理求出边长是解决问题的关键.9.甲乙两人在跳远练习中,6次成绩分别为(单位:米):甲:3.83.83.93.94.04.0;乙:3.83.93.93.93.94.0.则这次跳远练习中,甲乙两人成绩方差的大小关系是()A.> B.<C.= D.无法确定【考点】方差.【专题】选择题.【分析】欲比较甲,乙两人方差的大小关系,分别计算两人的平均数和方差后比较即可.【解答】解:甲的平均成绩为:(3.8+3.8+3.9+3.9+4.0+4.0)÷6=3.9,乙的平均成绩为:(3.8+3.9+3.9+3.9+3.9+4.0)÷6=3.9;甲的方差S甲2=[(3.8﹣3.9)2+(3.8﹣3.9)2+(3.9﹣3.9)2+(3.9﹣3.9)2+(4.0﹣3.9)2+(4.0﹣3.9)2]=,乙的方差S2=[(3.8﹣3.9)2+(3.9﹣3.9)2+(3.9﹣3.9)2+(3.9﹣3.9)2+(3.9﹣3.9)2+(4.0﹣3.9)2]=,故甲,乙两人方差的大小关系是:S2甲>S2乙.故选A.【点评】此题考查了方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.10.从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是()A.平均数 B.中位数 C.众数 D.方差【考点】数据的分析.【专题】选择题.【分析】服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.【解答】解:由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.故选C.【点评】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.11.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程y千米与行进时间t的函数图象的示意图,同学们画出的示意图如下,你认为正确的是()A. B. C. D.【考点】函数的图象.【专题】选择题.【分析】本题可用排除法.依题意,自行车以匀速前进后又停车修车,故可排除A项.然后自行车又加快速度保持匀速前进,故可排除B,D.【解答】解:最初以某一速度匀速行进,这一段路程是时间的正比例函数;中途由于自行车故障,停下修车耽误了几分钟,这一段时间变大,路程不变,因而选项A一定错误.第三阶段李老师加快了速度,仍保持匀速行进,结果准时到校,这一段,路程随时间的增大而增大,因而选项B,一定错误,这一段时间中,速度要大于开始时的速度,即单位时间内路程变化大,直线的倾斜角要大.故选C.【点评】本题考查动点问题的函数图象问题.注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.12.关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1) B.图象经过一、二、三象限C.y随x的增大而增大 D.当x>时,y<0【考点】一次函数的性质.【专题】选择题.【分析】A、把点的坐标代入关系式,检验是否成立;B、根据系数的性质判断,或画出草图判断;C、根据一次项系数判断;D、可根据函数图象判断,亦可解不等式求解.【解答】解:A、当x=1时,y=1.所以图象不过(1,﹣1),故错误;B、∵﹣2<0,3>0,∴图象过一、二、四象限,故错误;C、∵﹣2<0,∴y随x的增大而减小,故错误;D、画出草图.∵当x>时,图象在x轴下方,∴y<0,故正确.故选D.【点评】本题主要考查了一次函数的性质以及一次函数与方程、不等式的关系.常采用数形结合的方法求解.13.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为()A.3 B.4 C.5 D.6【考点】翻折变换(折叠问题);勾股定理.【专题】选择题.【分析】先根据翻折变换的性质得出CD=C′D,∠C=∠C′=90°,再设DE=x,则AE=8﹣x,由全等三角形的判定定理得出Rt△ABE≌Rt△C′DE,可得出BE=DE=x,在Rt△ABE中利用勾股定理即可求出x的值,进而得出DE的长.【解答】解:∵Rt△DC′B由Rt△DBC翻折而成,∴CD=C′D=AB=8,∠C=∠C′=90°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论