版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,菱形中,,,且,连接交对角线于.则的度数是()A.100° B.105° C.120° D.135°2.如图,点M为反比例函数y=上的一点,过点M作x轴,y轴的垂线,分别交直线y=-x+b于C,D两点,若直线y=-x+b分别与x轴,y轴相交于点A,B,则AD·BC的值是()A.3 B.2 C.2 D.3.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A. B.C. D.4.不等式组的解集在数轴上表示为()A. B. C. D.5.在平面直角坐标系中,点关于原点对称的点的坐标是()A. B. C. D.6.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为()A. B. C. D.7.在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是A. B. C. D.8.如图,从一块直径为24cm的圆形纸片上,剪出一个圆心角为90°的扇形ABC,使点A,B,C都在圆周上,将剪下的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径是()A.3cm B.2cm C.6cm D.12cm9.二次函数的图象如图所示,则一次函数与反比例函数在同一平面直角坐标系中的大致图象为()A. B. C. D.10.如图,将△ABC绕点C顺时针方向旋转40°得△A’CB’,若AC⊥A’B’,则∠BAC等于()A.50° B.60° C.70° D.80°二、填空题(每小题3分,共24分)11.若△ABC∽△A′B′C′,且,△ABC的周长为12cm,则△A′B′C′的周长为_____________.12.方程的一次项系数是________.13.圆心角是60°且半径为2的扇形面积是______14.已知二次函数的图象如图所示,则下列四个代数式:①,②,③;④中,其值小于的有___________(填序号).15.如图,扇形OAB,∠AOB=90,⊙P与OA、OB分别相切于点F、E,并且与弧AB切于点C,则扇形OAB的面积与⊙P的面积比是.16.要使二次根式有意义,则的取值范围是________.17.在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一一球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为_____.18.某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为,六月份的营业额为万元,那么关于的函数解式是______.三、解答题(共66分)19.(10分)随着冬季的来临,为了方便冰雪爱好者雪上娱乐,某体育用品商店购进一批简易滑雪板,每件进价为100元,售价为130元,每星期可卖出80件,由于商品库存较多,商家决定降价促销,根据市场调查,每件降价1元,每星期可多卖出4件.(1)设商家每件滑雪板降价x元,每星期的销售量为y件,写出y与x之间的函数关系式:(2)降价后,商家要使每星期的利润最大,应将售价定为每件多少元?最大销售利润多少?20.(6分)如图,△ABC中,AB=AC,BE⊥AC于E,D是BC中点,连接AD与BE交于点F,求证:△AFE∽△BCE.21.(6分)化简求值:,其中a=2cos30°+tan45°.22.(8分)已知,在平面直角坐标系中,二次函数的图象与轴交于点,与轴交于点,点的坐标为,点的坐标为.
(1)如图1,分别求的值;(2)如图2,点为第一象限的抛物线上一点,连接并延长交抛物线于点,,求点的坐标;(3)在(2)的条件下,点为第一象限的抛物线上一点,过点作轴于点,连接、,点为第二象限的抛物线上一点,且点与点关于抛物线的对称轴对称,连接,设,,点为线段上一点,点为第三象限的抛物线上一点,分别连接,满足,,过点作的平行线,交轴于点,求直线的解析式.23.(8分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?24.(8分)如图,直线AC与⊙O相切于点A,点B为⊙O上一点,且OC⊥OB于点O,连接AB交OC于点D.(1)求证:AC=CD;(2)若AC=3,OB=4,求OD的长度.25.(10分)某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是;(2)将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.26.(10分)垃圾分类是必须要落实的国家政策,环卫部门要求垃圾要按可回收物,有害垃圾,餐厨垃圾,其它垃圾四类分别装袋,投放.甲投放了一袋垃圾,乙投放了两袋垃圾(两袋垃圾不同类).(1)直接写出甲投放的垃圾恰好是类垃圾的概率;(2)用树状图求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
参考答案一、选择题(每小题3分,共30分)1、B【分析】由菱形及菱形一个内角为60°,易得△ABC与△ACD为等边三角形.由三线合一的性质求得∠ACE的度数.证得△BCE是等腰直角三角形,可求出∠CBE度数,用三角形外角的性质即可求得∠AFB.【详解】∵菱形ABCD中,∠ABC=60°,∴AB=BC=CD=AD,∠ADC=∠ABC=60°,∴△ABC、△ACD是等边三角形,∵CE⊥AD,
∴∠ACE=∠ACD=30°,
∴∠BCE=∠ACB+∠ACE=90°
∵CE=BC,∴△BCE是等腰直角三角形,
∴∠E=∠CBE=45°
∴∠AFB=∠CBE+∠ACB=45°+60°=105°,
故选:B.【点睛】本题考查了菱形的性质,等腰三角形的性质,三角形外角的性质.证得△BCE是等腰直角三角形是解题的关键.2、C【分析】设点M的坐标为(),将代入y=-x+b中求出C点坐标,同理求出D点坐标,再根据两点之间距离公式即可求解.【详解】解:设点M的坐标为(),将代入y=-x+b中,得到C点坐标为(),将代入y=-x+b中,得到D点坐标为(),∵直线y=-x+b分别与x轴,y轴相交于点A,B,∴A点坐标(0,b),B点坐标为(b,0),∴AD×BC=,故选:C.【点睛】本题考查的是一次函数及反比例函数的性质,先设出M点坐标,用M点的坐标表示出C、D两点的坐标是解答此题的关键.3、B【分析】根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.【详解】解:①当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数的的图象经过一、三象限,故B选项的图象符合要求,②当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数的的图象经过二、四象限,没有符合条件的选项.故选:B.【点睛】此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k值相同,则两个函数图象必有交点;一次函数与y轴的交点与一次函数的常数项相关.4、B【分析】分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.【详解】解:,解不等式2x−1≤5,得:x≤3,解不等式8−4x<0,得:x>2,故不等式组的解集为:2<x≤3,故选:B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.5、B【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y),可以直接写出答案.【详解】点P(-3,4)关于原点对称的点的坐标是(3,-4).故选:B.【点睛】本题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时坐标变化特点:横纵坐标均互为相反数.6、B【分析】先由三视图得出圆柱的底面直径和高,然后根据圆柱的体积=底面积×高计算即可.【详解】解:由三视图可知圆柱的底面直径为,高为,底面半径为,,故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.7、C【解析】试题分析:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.因此,∵函数y=x﹣1的,,∴它的图象经过第一、三、四象限.根据反比例函数的性质:当时,图象分别位于第一、三象限;当时,图象分别位于第二、四象限.∵反比例函数的系数,∴图象两个分支分别位于第一、三象限.综上所述,符合上述条件的选项是C.故选C.8、A【分析】圆的半径为12,求出AB的长度,用弧长公式可求得的长度,圆锥的底面圆的半径=圆锥的弧长÷2π.【详解】AB=cm,∴∴圆锥的底面圆的半径=÷(2π)=3cm.故选A.【点睛】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.9、B【解析】∵二次函数图象开口向上,∴a>1,∵对称轴为直线,∴b<1.∵与y轴的正半轴相交,∴c>1.∴的图象经过第一、三、四象限;反比例函数图象在第一、三象限,只有B选项图象符合.故选B.10、A【解析】考点:旋转的性质.分析:已知旋转角度,旋转方向,可求∠A′CA,根据互余关系求∠A′,根据对应角相等求∠BAC.解:依题意旋转角∠A′CA=40°,由于AC⊥A′B′,由互余关系得∠A′=90°-40°=50°,由对应角相等,得∠BAC=∠A′=50°.故选A.二、填空题(每小题3分,共24分)11、16cm【分析】根据相似三角形周长的比等于相似比求解.【详解】解:∵△ABC∽△A′B′C′,且,即相似三角形的相似比为,
∵△ABC的周长为12cm
∴△A′B′C′的周长为12÷=16cm.故答案为:16.【点睛】此题考查相似三角形的性质,解题关键在于掌握相似三角形周长的比等于相似比.12、-3【解析】对于一元二次方程的一般形式:,其中叫做二次项,叫做一次项,为常数项,进而直接得出答案.【详解】方程的一次项是,∴一次项系数是:故答案是:.【点睛】本题主要考查了一元二次方程的一般形式,正确得出一次项系数是解题关键.13、【解析】由扇形面积公式得:S=故答案是:.14、②④【分析】①根据函数图象可得的正负性,即可判断;②令,即可判断;③令,方程有两个不相等的实数根即可判断;④根据对称轴大于0小于1即可判断.【详解】①由函数图象可得、∵对称轴∴∴②令,则③令,由图像可知方程有两个不相等的实数根∴④∵对称轴∴∴综上所述,值小于的有②④.【点睛】本题考察二次函数图象与系数的关系,充分利用图象获取解题的关键信息是关键.15、【详解】依题意连接OC则P在OC上,连接PF,PE则PF⊥OA,PE⊥OB,由切线长定理可知四边形OEPF为正方形,且其边长即⊙P的半径(设⊙P的半径为r)∴OP=又OC=OP+PC=+r=(1+)r即扇形OAB的(1+)r,∴16、x≥1【分析】根据二次根式被开方数为非负数进行求解.【详解】由题意知,,解得,x≥1,故答案为:x≥1.【点睛】本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.17、1.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.25左右得到比例关系,列出方程求解即可.【详解】解:根据题意得:,解得:a=1,经检验:a=1是分式方程的解,故答案为:1.【点睛】本题考查的知识点是事件的概率问题,弄清题意,根据概率公式列方程求解比较简单.18、或【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可先用x表示出五月份的营业额,再根据题意表示出六月份的营业额,即可列出方程求解.【详解】解:设增长率为x,则五月份的营业额为:,六月份的营业额为:;故答案为:或.【点睛】本题考查了一元二次方程的应用中增长率问题,若原来的数量为a,平均每次增长或降低的百分率为x,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)1.增长用“+”,下降用“”.三、解答题(共66分)19、(1)y=80+4x;(2)每件简易滑雪板销售价是125元时,商店每天销售这种小商品的利润最大,最大利润是2500元.【分析】(1)根据售价每降价1元,平均每星期的期就多售出4件进而得出答案;(2)利用总利润=(实际售价﹣进价)×销售量,即可得函数解析式,再配方即可得最值情况.【详解】解:(1)依题意有:y=80+4x;(2)设利润为w,则w=(80+4x)(30﹣x)=﹣4(x﹣5)2+2500;∵a=﹣4<0,∴当x=5时w取最大值,最大值是2500,即降价5元时利润最大,∴每件简易滑雪板销售价是125元时,商店每天销售这种小商品的利润最大,最大利润是2500元.【点睛】本题考查了列代数式和二次函数的应用,掌握二次函数求最值的方法是解答本题的关键.20、证明详见解析.【解析】试题分析:根据等腰三角形的性质,由AB=AC,D是BC中点得到AD⊥BC,易得∠ADC=∠BEC=90°,再证明∠FAD=∠CBE,于是根据有两组角对应相等的两个三角形相似即可得到结论.试题解析:证明:∵AB=AC,D是BC中点,∴AD⊥BC,∴∠ADC=90°,∴∠FAE+∠AFE=90°,∵BE⊥AC,∴∠BEC=90°,∴∠CBE+∠BFD=90°,∵∠AFE=∠BFD,∴∠FAD=∠CBE,∴△AFE∽△BCE.考点:相似三角形的判定.21、,【分析】本题考查了分式的化简求值,先把括号内通分化简,再把除法转化为乘法,约分化简,最后根据特殊角的三角函数值求出a的值,代入计算.【详解】解:原式=÷==,当a=2cos30°+tan45°=2×+1=+1时,原式=.22、(1),;(2);(3).【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;
(2)作轴于K,轴于L,OD=3OE,则OL=3OK,DL=3KE,设点E的横坐标为t,则点D的横坐标为-3t,则点E、D的坐标分别为:(t,)、(-3t,-+3t+),即可求解;(3)设点的横坐标为,可得PH=m2+m-,过作EF∥y轴交于点交轴于点,TE=PH+YE=m2+m-+2=(m+1)2,tan∠AHE=,tan∠PET=,而∠AHE+∠EPH=2α,故∠AHE=∠PET=∠EPH=α,PH=PQ•tanα,即m2+m-=(2m+2)×,解得:m=2-1,故YH=m+1=2,PQ=4,点P、Q的坐标分别为:(2-1,4)、(-2-1,4),tan∠YHE=,tan∠PQH=;证明△PMH≌△WNH,则PH=WH,而QH=2PH,故QW=HW,即W是QH的中点,则W(-1,2),再根据待定系数法即可求解.【详解】解:(1)把、分别代入得:,解得;(2)如图2,由(1)得,作轴于K,轴于L,∴EK∥DL,∴.∵,∴,设点的横坐标为,,,∴的横坐标为,分别把和代入抛物线解析式得,∴,∴,.∵,∴,∴,∴,∴,解得(舍),,∴.(3)如图3,设点的横坐标为,把代入抛物线得,∴.过作EF∥y轴交于点交轴于点,∴轴.∵点与点关于抛物线的对称轴对称,∴PQ∥x轴,,∴,点坐标为,又∵轴,∴ET∥PH,∴,∴,∴四边形为矩形,∴,∴,∴,,,∴.∴,,∴,∴.又∵,∴.∵,∴解得,∵,∴.∴,,把代入抛物线得,∴,∴,∴,∴,∴,∴,∴.若交于点,∵NF∥PE,∴,∴,∵,∴,∴,,,∴,∴,∴.作WS∥PQ,交于点交轴于点,∴△WSH∽△QPH,∴.∵∴,∴,,∴.∵,∴,∴.设的解析式为,把、代入得,解得,∴.∵FN∥PE,∴设的解析式为,把代入得,∴的解析式为.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、三角形全等、解直角三角形等,其中(3)证明△PMH≌△WNH是解题的关键.23、y=﹣10x2+1600x﹣48000;80元时,最大利润为16000元.【解析】试题分析:(1)根据“总利润=单件的利润×销售量”列出二次函数关系式即可;(2)将得到的二次函数配方后即可确定最大利润试题解析:(1)S=y(x﹣20)=(x﹣40)(﹣10x+1)=﹣10x2+1600x﹣48000;(2)S=﹣10x2+1600x﹣48000=﹣10(x﹣80)2+16000,则当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16000元.考点:二次函数的应用24、(1)见解析;(1)1【分析】(1)由AC是⊙O的切线,得OA⊥AC,结合OD⊥OB,OA=OB,得∠CDA=∠DAC,进而得到结论;(1)利用勾股定理求出OC,即可解决问题.【详解】(1)∵AC是⊙O的切线,∴OA⊥AC,∴∠OAC=90°,即:∠OAD+∠DAC=90°,∵OD⊥OB,∴∠DOB=90°,∴∠BDO+∠B=90°,∵OA=OB,∴∠OAD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度技术转让合同标的明细
- 运载工具用平视显示装置市场环境与对策分析
- 拖车车灯市场发展现状调查及供需格局分析预测报告
- 2024年度物业服务合同管理范围
- 2024年度橱柜加工合同技术培训与技术转移条款
- 2024年度汽车制造外包合同
- 2024年度影视制作与代驾服务合同
- 图书架市场发展现状调查及供需格局分析预测报告
- 2024年度演艺经纪合同及演出安排
- 烫发剂市场需求与消费特点分析
- 《后羿射日故事》PPT课件.ppt
- 马克思的资本有机构成理论与当代中国的经济发展
- 《秸秆还田》ppt课件
- 食品加工企业安全设计设施专篇
- 颈动脉斑块科普知识PPT参考幻灯片
- 封头容积、质量、内表面积和总高度计算
- 反射隔热涂料施工方案(完整版)
- 海南省建设工程施工阶段监理服务费计费规则
- 创建五星级班组PPT课件
- TBJWA001-2021健康直饮水水质标准
- 监理日报模板
评论
0/150
提交评论