版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝上C.走出校门,看到的第一辆汽车的牌照的末位数字是偶数D.一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球2.下列方程是一元二次方程的是()A. B.x2=0 C.x2-2y=1 D.3.下面是由几个小正方体搭成的几何体,则这个几何体的左视图为()A. B. C. D.4.如图,函数y1=x﹣1和函数的图象相交于点M(2,m),N(﹣1,n),若y1>y2,则x的取值范围是()A.x<﹣1或0<x<2 B.x<﹣1或x>2C.﹣1<x<0或0<x<2 D.﹣1<x<0或x>25.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),说法:①abc<0;②2a﹣b=0;③﹣a+c<0;④若(﹣5,y1)、(,y2)是抛物线上两点,则y1>y2,其中说法正确的有()个.A.1 B.2 C.3 D.46.如图是一个几何体的三视图,根据图中提供的数据,计算这个几何体的表面积是()A. B. C. D.7.一元二次方程的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.不能确定8.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣) B.(﹣) C.(﹣) D.(﹣)9.将一副三角尺(在中,,,在中,,)如图摆放,点为的中点,交于点,经过点,将绕点顺时针方向旋转(),交于点,交于点,则的值为()A. B. C. D.10.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)=438 D.438(1+2x)=38911.一元二次方程的根是A. B. C., D.,12.下列函数中,是反比例函数的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为_________m.14.如图,将半径为2,圆心角为90°的扇形BAC绕点A逆时针旋转60°,点B、C的对应点分别为D、E,点D在上,则阴影部分的面积为_____.15.设、是方程的两个实数根,则的值为_____.16.若点P(3,1)与点Q关于原点对称,则点Q的坐标是___________.17.已知,是方程的两实数根,则__.18.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.那么,小于100的自然数中,“纯数”的个数为___________个.三、解答题(共78分)19.(8分)解方程:(1)2x2-4x-31=1;(2)x2-2x-4=1.20.(8分)如图,已知直线与轴交于点,与轴交于点,抛物线经过、两点并与轴的另一个交点为,且.(1)求抛物线的解析式;(2)点为直线上方对称轴右侧抛物线上一点,当的面积为时,求点的坐标;(3)在(2)的条件下,连接,作轴于,连接、,点为线段上一点,点为线段上一点,满足,过点作交轴于点,连接,当时,求的长.21.(8分)如图,抛物线的顶点为,且抛物线与直线相交于两点,且点在轴上,点的坐标为,连接.(1),,(直接写出结果);(2)当时,则的取值范围为(直接写出结果);(3)在直线下方的抛物线上是否存在一点,使得的面积最大?若存在,求出的最大面积及点坐标.22.(10分)我们规定:方程的变形方程为.例如:方程的变形方程为.(1)直接写出方程的变形方程;(2)若方程的变形方程有两个不相等的实数根,求的取值范围;(3)若方程的变形方程为,直接写出的值.23.(10分)近期江苏省各地均发布“雾霾”黄色预警,我市某口罩厂商生产一种新型口罩产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系满足下表.销售单价x(元/件)…20253040…每月销售量y(万件)…60504020…(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并直接写出y与x之间的函数关系式为__________;(2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?24.(10分)如图,已知二次函数的图象经过点,.(1)求的值;(2)直接写出不等式的解.25.(12分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE•CP的值.26.如图1,抛物线y=﹣x2+bx+c交x轴于点A(-4,0)和点B,交y轴于点C(0,4).(1)求抛物线的函数表达式;(2)如图2,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,当△ADC面积有最大值时,在抛物线对称轴上找一点M,使DM+AM的值最小,求出此时M的坐标;(3)点Q在直线AC上的运动过程中,是否存在点Q,使△BQC为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据确定事件和随机事件的概念对各个事件进行判断即可.【详解】解:明天我市下雨、抛一枚硬币,正面朝上、走出校门,看到的第一辆汽车的牌照的末位数字是偶数都是随机事件,一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球是必然事件,故选:D.【点睛】本题考查的是确定事件和随机事件,事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的;在一定条件下,可能发生也可能不发生的事件,称为随机事件.2、B【解析】利用一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程,可求解.【详解】解:A:,化简后是:,不符合一元二次方程的定义,所以不是一元二次方程;
B:x2=0,是一元二次方程;
C:x2-2y=1含有两个未知数,不符合一元二次方程的定义,所以不是一元二次方程;
D:,分母含有未知数,是一元一次方程,所以不是一元二次方程;
故选:B.【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.3、D【分析】根据几何体的三视图的定义以及性质进行判断即可.【详解】根据几何体的左视图的定义以及性质得,这个几何体的左视图为故答案为:D.【点睛】本题考查了几何体的三视图,掌握几何体三视图的性质是解题的关键.4、D【解析】析:根据反比例函数的自变量取值范围,y1与y1图象的交点横坐标,可确定y1>y1时,x的取值范围.解答:解:∵函数y1=x-1和函数y1=的图象相交于点M(1,m),N(-1,n),∴当y1>y1时,那么直线在双曲线的上方,∴此时x的取值范围为-1<x<0或x>1.故选D.点评:本题考查了反比例函数与一次函数的交点问题的运用.关键是根据图象的交点坐标,两个函数图象的位置确定自变量的取值范围.5、D【分析】由抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a﹣b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=﹣1时,y<0,则得到a﹣2a+c<0,则可对③进行判断;通过点(﹣5,y1)和点(,y2)离对称轴的远近对④进行判断.【详解】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=﹣1时,y=a﹣b+c<0,∵b=2a,∴a﹣2a+c<0,即﹣a+c<0,所以③正确;∵点(﹣5,y1)离对称轴要比点(,y2)离对称轴要远,∴y1>y2,所以④正确.故答案为D.【点睛】本题考查了二次函数图象与系数的关系,灵活运用二次函数解析式和图像是解答本题的关键..6、A【分析】首先根据题目所给出的三视图,判断出该几何体为个圆柱体,该圆柱体的底部圆的半径为4,高为6,之后根据每个面分别求出表面积,再将面积进行求和,即可求出答案.【详解】解:∵根据题目所给出的三视图,判断出该几何体为个圆柱体,该圆柱体的底部圆的半径为4,高为6,∴该几何体的上、下表面积为:,该几何体的侧面积为:,∴总表面积为:,故选:A.【点睛】本题考查了几何体的表面积,解题的关键在于根据三视图判断出几何体的形状,并把每个面的面积分别计算出来,掌握圆、长方体等面积的计算公式也是很重要的.7、B【分析】根据根的判别式(),求该方程的判别式,根据结果的正负情况即可得到答案.【详解】解:根据题意得:△=22-4×1×(-1)
=4+4
=8>0,即该方程有两个不相等的实数根,
故选:B.【点睛】本题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8、A【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,则△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴设NO=1x,则NC1=4x,OC1=1,则(1x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(-,).故选A.【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.9、C【解析】先根据直角三角形斜边上的中线性质得CD=AD=DB,则∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根据旋转的性质得∠PDM=∠CDN=α,于是可判断△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定义得到tan∠PCD=tan30°=,于是可得=.【详解】∵点D为斜边AB的中点,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF绕点D顺时针方向旋转α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故选:C.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.10、B【详解】解:因为每半年发放的资助金额的平均增长率为x,去年上半年发放给每个经济困难学生389元,去年下半年发放给每个经济困难学生389(1+x)元,则今年上半年发放给每个经济困难学生389(1+x)(1+x)=389(1+x)2元.据此,由题设今年上半年发放了1元,列出方程:389(1+x)2=1.故选B.11、B【分析】方程两边开方,即可得出两个一元一次方程,求出方程的解即可.【详解】(x﹣2)2=0,则x1=x2=2,故选B.【点睛】本题主要考查了直接开平方法解一元二次方程,关键是掌握要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.12、B【解析】根据反比例函数的一般形式即可判断.【详解】A、不符合反比例函数的一般形式y=,(k≠0)的形式,选项错误;B、是一次函数,正确;C、不符合反比例函数的一般形式y=,(k≠0)的形式,选项错误;D、不符合反比例函数的一般形式y=,(k≠0)的形式,选项错误.故选:B.【点睛】本题考查了反比例函数的定义,重点是将一般式y=(k≠0)转化为y=kx−1(k≠0)的形式.二、填空题(每题4分,共24分)13、【详解】如图:Rt△ABC中,∠C=90°,i=tanA=1:3,AB=1.设BC=x,则AC=3x,根据勾股定理,得:,解得:x=(负值舍去).故此时钢球距地面的高度是米.14、【分析】直接利用旋转的性质结合扇形面积求法以及等边三角形的判定与性质得出S阴影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD,进而得出答案.【详解】连接BD,过点B作BN⊥AD于点N,∵将半径为2,圆心角为90°的扇形BAC绕A点逆时针旋转60°,∴∠BAD=60°,AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,则∠ABN=30°,故AN=1,BN=,S阴影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD==π﹣=.故答案为.【点睛】考查了扇形面积求法以及等边三角形的判定与性质,正确得出△ABD是等边三角形是解题关键.15、-1【分析】根据根与系数的关系可得出,,将其代入中即可得出结论.【详解】∵、是方程的两个实数根,∴,,∴.故答案为-1.【点睛】本题考查了根与系数的关系,牢记“两根之和等于,两根之积等于”是解题的关键.16、(–3,–1)【分析】根据关于原点对称的点的规律:纵横坐标均互为相反数解答即可.【详解】根据关于原点对称的点的坐标的特点,可得:点P(3,1)关于原点过对称的点Q的坐标是(–3,–1).故答案为:(–3,–1).【点睛】本题主要考查了关于原点对称的点的坐标特点,解题时根据两个点关于原点对称时,它们的同名坐标互为相反数可直接得到答案,本题属于基础题,难度不大,注意平面直角坐标系中任意一点P(x,y),关于原点的对称点是(–x,–y),即关于原点的对称点,横纵坐标都变成相反数.17、1【分析】先根据一元二次方程根的定义得到,则可变形为,再根据根与系数的关系得到,,然后利用整体代入的方法计算代数式的值.【详解】是方程的实数根,,,,,是方程的两实数根,,,.故答案为1.【点睛】考查了根与系数的关系:若,是一元二次方程的两根时,,.18、1【分析】根据题意,连续的三个自然数各位数字是0,1,2,其他位的数字为0,1,2,3时不会产生进位,然后根据这个数是几位数进行分类讨论,找到所有合适的数.【详解】解:当这个数是一位自然数时,只能是0,1,2,一共3个,当这个数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,一共9个,∴小于100的自然数中,“纯数”共有1个.故答案是:1.【点睛】本题考查归纳总结,解题的关键是根据题意理解“纯数”的定义,总结方法找出所有小于100的“纯数”.三、解答题(共78分)19、(1)x1=-3,x2=5;(2)x1=,x2=【分析】(1)利用等式的性质将方程化简,再利用因式分解法解得即可;(2)利用公式法求解即可.【详解】解:(1)方程变形为:x2-2x-15=1,即(x+3)(x-5)=1,解得:x1=-3,x2=5;(2)由方程可得:a=1,b=-2,c=-4,∴==,∴x1=,x2=.【点睛】本题考查了一元二次方程的解法.解题的关键是选择适当的解题方法,注意解题需细心.20、(3);(3)R(3,3);(3)3或.【分析】(3)求出A、B、C的坐标,把A、B的坐标代入抛物线解析式,解方程组即可得出结论;(3)设R(t,).作RK⊥y轴于K,RW⊥x轴于W,连接OR.根据计算即可;(3)在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB于H.分两种情况讨论:①点E在F的左边;②点E在F的右边.【详解】(3)当x=0时y=3,∴C(0,3),∴OC=3.∵OC=3OA,∴OA=3,∴A(-3,0).当y=0时x=4,∴B(4,0).把A、B坐标代入得解得:,∴抛物线的解析式为.(3)设R(t,).作RK⊥y轴于K,RW⊥x轴于W,连接OR.∵∵,∴,(舍去),,∴R(3,3).(3)在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB于H.分两种情况讨论:①当点E在F的左边时,如图3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ,∴AM∥EQ,∴∠MAH=∠QEF.∵∠QFE=∠MHA=90°,∴△QEF∽△MAH,∴.∵OA=3,OH=3,MH=RH-RM=3-3=3,∴AH=AO+OH=4,∴EF=3QF.设CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=3m,∴EH=3m.∵ACPE为平行四边形,∴AE=CP=m.∵EH=AH-AE=4-m,∴3m=4-m,∴m=3,∴CP=3.②当点E在F的右边时,设AM交QE于N.如图3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ=45°,∴∠ENG=∠ENA=90°.∵∠EQF+∠QEF=90°,∠EAN+∠QEF=90°,∴∠EQF=∠MAB.∵∠QFE=∠AHM=90°,∴△QEF∽△AMH,∴,∴QF=3EF.设CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=m,∴EH=m.∵ACPE为平行四边形,∴AE=CP=m.∵EH=AH-AE=4-m,∴4-m=m,∴m=,∴CP=.综上所述:CP的值为3或.【点睛】本题是二次函数的综合题目,涉及了相似三角形的判定与性质、平行四边形的性质,解答本题需要我们熟练各个知识点的内容,注意要分类讨论.21、(1)1,-1,1;(2);(3)最大值为,点.【分析】(1)将代入求得k值,求得点A的坐标,再将A、B的坐标代入即可求得答案;(2)在图象上找出抛物线在直线下方自变量的取值范围即可;(3)设点P的坐标为,则点Q的坐标为,求得的长,利用三角形面积公式得到,然后根据二次函数的性质即可解决问题.【详解】(1)∵直线经过点,∴,解得:,∵直线与x轴交于点A,令,则,点A的坐标为,∵抛物线与直线相交于两点,∴,解得:,故答案为:,,;(2)∵抛物线与直线相交于A,两点,观察图象,抛物线在直线下方时,,∴当时,则的取值范围为:,故答案为:;(3)过点P作y轴的平行线交直线于点Q,设点P的坐标为,则点Q的坐标为,∴,,∴,当时,的面积有最大值为,此时P点坐标为;故答案为:面积有最大值为,P点坐标为;【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式;会运用数形结合的思想解决数学问题.22、(1);(2);(3)1【分析】(1)根据题目的规定直接写出方程化简即可.(2)先将方程变形,再根据判别式解出范围即可.(3)先将变形前的方程列出来化简求出a、b、c,相加即可求解.【详解】(1)由题意得,化简后得:.(2)若方程的变形方程为,即.由方程的变形方程有两个不相等的实数根,可得方程的根的判别式,即.解得(3)变形前的方程为:,化简后得:x2=0,∴a=1,b=0,c=0,∴a+b+c=1.【点睛】本题考查一元二次方程的运用,关键在于读题根据规定变形即可.23、(1)y=﹣2x+100;(2)当销售单价为28元或1元时,厂商每月获得的利润为41万元;(3)当销售单价为35元时,厂商每月获得的利润最大,最大利润为510万元.【分析】(1)直接利用待定系数法求出一次函数解析式;(2)根据利润=销售量×(销售单价﹣成本),代入代数式求出函数关系式,令利润z=41,求出x的值;(3)根据厂商每月的制造成本不超过51万元,以及成本价18元,得出销售单价的取值范围,进而得出最大利润.【详解】解:(1)由表格中数据可得:y与x之间的函数关系式为:y=kx+b,把(20,60),(25,50)代入得:解得:故y与x之间的函数关系式为:y=﹣2x+100;(2)设总利润为z,由题意得,z=y(x﹣18)=(﹣2x+100)(x﹣18)=﹣2x2+136x﹣1800;当z=41时,﹣2x2+136x﹣1800=41,解得:x1=28,x2=1.答:当销售单价为28元或1元时,厂商每月获得的利润为41万元;(3)∵厂商每月的制造成本不超过51万元,每件制造成本为18元,∴每月的生产量为:小于等于=30万件,y=﹣2x+100≤30,解得:x≥35,∵z=﹣2x2+136x﹣1800=﹣2(x﹣34)2+512,∴图象开口向下,对称轴右侧z随x的增大而减小,∴x=35时,z最大为:510万元.当销售单价为35元时,厂商每月获得的利润最大,最大利润为510万元.【点睛】本题考查的是二次函数在实际生活中的应用,关键是根据题意求出二次函数的解析式以及利用增减性求出最值.24、(1),;(2)【解析】(1)将已知两点代入抛物线解析式求出b与c的值即可;(2)根据图象及抛物线与x轴的交点,得出不等式的解集即可.【详解】(1)将,代入抛物线解析式得解得,(2)由(1)知抛物线解析式为:,对称轴为,所以抛物线与x轴的另一交点坐标为(2,0)由图象得:不等式的解为【点睛】本题考查待定系数法求二次函数解析式,以及二次函数与不等式,熟练掌握待定系数法是解题关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体育产业场馆预订与运动指导服务方案
- 护士节活动策划方案(2篇)
- 小学班级活动方案(4篇)
- 高边坡开挖安全专项方案样本(2篇)
- 开展领导点评工作的实施方案例文(6篇)
- 小学一年级语文教学方案(六篇)
- 村春节活动方案模版(2篇)
- 学校六一活动策划方案例文(3篇)
- 农村生活垃圾专项治理工作方案(2篇)
- 创建卫生先进单位实施方案样本(4篇)
- MOOC 管理咨询-暨南大学 中国大学慕课答案
- 医院保洁培训课件
- (2024年)介入诊疗应急预案
- 2024年职业卫生技术人员评价方向考试题库附答案
- 施工日志及楼工程施工日志
- 毛泽东思想概论 课件 第六章 革命军队建设和军事战略理论
- 喜茶营销策划案例
- 像科学家一样思考-怎么做-怎么教-
- 化学安全管理制度(通用15篇)
- 5G智慧急救规划建设方案
- 制药工程专业生涯规划报告书
评论
0/150
提交评论