版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,是抛物线的图象,根据图象信息分析下列结论:①;②;③;④.其中正确的结论是()A.①②③ B.①②④ C.②③④ D.①②③④2.我们知道,一元二次方程可以用配方法、因式分解法或求根公式进行求解.对于一元三次方程ax3+bx2+cx+d=0(a,b,c,d为常数,且a≠0)也可以通过因式分解、换元等方法,使三次方程“降次”为二次方程或一次程,进而求解.这儿的“降次”所体现的数学思想是()A.转化思想 B.分类讨论思想C.数形结合思想 D.公理化思想3.若两个相似三角形的面积之比为1:4,则它们的周长之比为()A.1:2 B.2:1 C.1:4 D.4:14.在一个不透明的袋子里装有5个红球和若干个白球,它们除颜色外其余完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计袋中的白球大约有()个A.10 B.15 C.20 D.255.如图,P、Q是⊙O的直径AB上的两点,P在OA上,Q在OB上,PC⊥AB交⊙O于C,QD⊥AB交⊙O于D,弦CD交AB于点E,若AB=20,PC=OQ=6,则OE的长为()A.1 B.1.5 C.2 D.2.56.下列事件是随机事件的是()A.画一个三角形,其内角和是 B.射击运动员射击一次,命中靶心C.投掷一枚正六面体骰子,朝上一面的点数小于 D.在只装了红球的不透明袋子里,摸出黑球7.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若,DE=4,则EF的长是()A. B. C.6 D.108.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是()A.③②①④ B.②④①③ C.③①④② D.②③④①9.某楼盘准备以每平方米16000元的均价对外销售,由于受有关房地产的新政策影响,购房者持币观望.开发商为促进销售,对价格进行了连续两次下调,结果以每平方米14440元的均价开盘销售,则平均每次下调的百分率为()A.5% B.8% C.10% D.11%10.如图,是矩形内的任意一点,连接、、、,得到,,,,设它们的面积分别是,,,,给出如下结论:①②③若,则④若,则点在矩形的对角线上.其中正确的结论的序号是()A.①② B.②③ C.③④ D.②④二、填空题(每小题3分,共24分)11.如图,矩形的顶点,在反比例函数的图象上,若点的坐标为,,轴,则点的坐标为__.12.在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有_________个13.若分别是方程的两实根,则的值是__________.14.如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第7个小三角形的面积为_________________15.工厂质检人员为了检测其产品的质量,从同一批次共1000件产品中随机抽取50件进行检检测出次品1件,由此估计这一批产品中的次品件数是_____.16.某校九年1班共有45位学生,其中男生有25人,现从中任选一位学生,选中女生的概率是____.17.在比例尺为1∶500000的地图上,量得A、B两地的距离为3cm,则A、B两地的实际距离为_____km.18.一元二次方程x2﹣4x+4=0的解是________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣2,3),B(﹣3,2),C(﹣1,1).(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;(2)画出△A1B1C1绕原点顺时针旋90°后得到的△A2B2C2;(3)若△A′B′C′与△ABC是中心对称图形,则对称中心的坐标为.20.(6分)如图,,,,.求和的长.21.(6分)某商场销售一种成本为每件元的商品,销售过程中发现,每月销售量(件)与销售单价(元)之间的关系可近似看作一次函数.商场销售该商品每月获得利润为(元).(1)求与之间的函数关系式;(2)如果商场销售该商品每月想要获得元的利润,那么每件商品的销售单价应为多少元?(3)商场每月要获得最大的利润,该商品的销售单价应为多少?22.(8分)我县寿源壹号楼盘准备以每平方米元均价对外销售,由于国务院有关房地产的新政策出台,购房者持币观望,房地产开发商为了加快资金周转,对价格进行两次下调后,决定以每平方米元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘均价购买一套平方米的住房,开发商给予以下两种优惠方案供选择:①打折销售;②不打折,一次性送装修费每平方米元.试问哪种方案更优惠?23.(8分)如图,四边形OABC为平行四边形,B、C在⊙O上,A在⊙O外,sin∠OCB=.(1)求证:AB与⊙O相切;(2)若BC=10cm,求图中阴影部分的面积.24.(8分)在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板AB始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC绕着转轴B旋转.已知连接杆BC的长度为20cm,BD=cm,压柄与托板的长度相等.(1)当托板与压柄的夹角∠ABC=30°时,如图①点E从A点滑动了2cm,求连接杆DE的长度.(2)当压柄BC从(1)中的位置旋转到与底座垂直,如图②.求这个过程中,点E滑动的距离.(结果保留根号)25.(10分)如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.(1)求直线l的表达式;(2)若反比例函数的图象经过点P,求m的值.26.(10分)商场销售一批衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)要使商场平均每天盈利1600元,可能吗?请说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【分析】采用数形结合的方法解题,根据抛物线的开口方向,对称轴,与x、y轴的交点,通过推算进行判断.【详解】①根据抛物线对称轴可得,,正确;②当,,根据二次函数开口向下和得,和,所以,正确;③二次函数与x轴有两个交点,故,正确;④由题意得,当和时,y的值相等,当,,所以当,,正确;故答案为:D.【点睛】本题考查了二次函数的性质和判断,掌握二次函数的性质是解题的关键.2、A【分析】解高次方程的一般思路是逐步降次,所体现的数学思想就是转化思想.【详解】由题意可知,解一元三次方程的过程是将三次转化为二次,二次转化为一次,从而解题,在解题技巧上是降次,在解题思想上是转化思想.故选:A.【点睛】本题考查高次方程;通过题意,能够从中提取出解高次方程的一般方法,同时结合解题过程分析出所运用的解题思想是解题的关键.3、A【解析】∵两个相似三角形的面积之比为1:4,
∴它们的相似比为1:1,(相似三角形的面积比等于相似比的平方)
∴它们的周长之比为1:1.
故选A.【点睛】相似三角形的面积比等于相似比的平方,相似三角形的周长的比等于相似比.4、C【分析】由摸到红球的频率稳定在0.2附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】设白球个数为x个,∵摸到红色球的频率稳定在0.2左右,∴口袋中得到红色球的概率为0.2,∴,解得:x=20,经检验x=20是原方程的根,故白球的个数为20个.故选C.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.5、C【分析】因为OCP和ODQ为直角三角形,根据勾股定理可得OP、DQ、PQ的长度,又因为CPDQ,两直线平行内错角相等,∠PCE=∠EDQ,且∠CPE=∠DQE=90°,可证CPE∽DQE,可得,设PE=x,则EQ=14-x,解得x的取值,OE=OP-PE,则OE的长度可得.【详解】解:∵在⊙O中,直径AB=20,即半径OC=OD=10,其中CPAB,QDAB,∴OCP和ODQ为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CPAB,QDAB,垂直于用一直线的两直线相互平行,∴CPDQ,且C、D连线交AB于点E,∴∠PCE=∠EDQ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故,设PE=x,则EQ=14-x,∴,解得x=6,∴OE=OP-PE=8-6=2,故选:C.【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.6、B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、画一个三角形,其内角和是360°是不可能事件,故本选项错误;
B、射击运动员射击一次,命中靶心是随机事件,故本选项正确;
C、投掷一枚正六面体骰子,朝上一面的点数小于7是必然事件,故本选项错误;
D、在只装了红球的不透明袋子里,摸出黑球是不可能事件,故本选项错误.
故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、C【分析】根据平行线分线段成比例可得,代入计算即可解答.【详解】解:∵l1∥l2∥l3,∴,即,解得:EF=1.故选:C.【点睛】本题主要考查平行线分线段成比例定理,熟悉定理是解题的关键.8、B【分析】根据相似三角形的判定定理,即可得到答案.【详解】∵DE∥BC,∴∠B=∠ADE,∵DF∥AC,∴∠A=∠BDF,∴∆ADE~∆DBF.故选:B.【点睛】本题主要考查三角形相似的判定定理,掌握“有两个角对应相等的两个三角形相似”是解题的关键.9、A【分析】设平均每次下调的百分率为x,根据该楼盘的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,即可得出结果.【详解】设平均每次下调的百分率为x,依题意,得:16000(1﹣x)2=14440,解得:x1=0.05=5%,x2=1.95(不合题意,舍去),答:平均每次下调的百分率为5%.故选:A.【点睛】本题主要考查一元二次方程的实际应用,找出等量关系,列出关于x的方程,是解题的关键.10、D【分析】根据三角形面积公式、矩形性质及相似多边形的性质得出:①矩形对角线平分矩形,S△ABD=S△BCD,只有P点在BD上时,S₁+S₂=S₃+S4;②根据底边相等的两个三角形的面积公式求和可知,S₁+S₃=矩形ABCD面积,同理S₂+S4=矩形ABCD面积,所以S₁+S₃=S₂+S4;③根据底边相等高不相等的三角形面积比等于高的比来说明即可;④根据相似四边形判定和性质,对应角相等、对应边成比例的四边形相似,矩形AEPF∽矩形ABCD推出,点P在对角线上.【详解】解:①当点P在矩形的对角线BD上时,S₁+S₂=S₃+S4.但P是矩形ABCD内的任意一点,所以该等式不一定成立。故①不一定正确;②∵矩形∴AB=CD,AD=BC∵△APD以AD为底边,△PBC以BC为底边,这两三角形的底相等,高的和为AB,∴S₁+S₃=S矩形ABCD;同理可得S₂+S4=S矩形ABCD,∴②S₂+S4=S₁+S₃正确;③若S₃=2S₁,只能得出△APD与△PBC高度之比是,S₂、S4分别是以AB、CD为底的三角形的面积,底相等,高的比不一定等于,S4=2S2不一定正确;故此选项错误;④过点P分别作PF⊥AD于点F,PE⊥AB于点E,F.若S1=S2,.则AD·PF=AB·PE∴△APD与△PAB的高的比为:∵∠DAE=∠PEA=∠PFA=90°∴四边形AEPF是矩形,∴矩形AEPF∽矩形ABCD∴∴P点在矩形的对角线上,选项④正确.故选:D【点睛】本题考查了三角形面积公式的应用,相似多边形的判定和性质,用相似多边形性质对应边成比例是解决本题的难点.二、填空题(每小题3分,共24分)11、.【分析】根据矩形的性质和点的坐标,即可得出的纵坐标为2,设,根据反比例函数图象上点的坐标特征得出,解得,从而得出的坐标为.【详解】点的坐标为,,,四边形是矩形,,轴,轴,点的纵坐标为2,设,矩形的顶点,在反比例函数的图象上,,,,故答案为.【点睛】本题考查了反比例函数图象上点的坐标特征,矩形的性质,求得的纵坐标为2是解题的关键.12、14【分析】先由频率估计出摸到黄球的概率,然后利用概率公式求解即可.【详解】因摸到黄球的频率稳定在0.35左右则摸到黄球的概率为0.35设布袋中黄球的个数为x个由概率公式得解得故答案为:14.【点睛】本题考查了频率估计概率、概率公式,根据频率估计出事件概率是解题关键.13、3【分析】根据一元二次方程根与系数的关系即可得答案.【详解】∵分别是方程的两实根,∴=3,故答案为:3【点睛】此题考查根与系数的关系,一元二次方程根与系数的关系:x1+x2=-,x1x2=;熟练掌握韦达定理是解题关键.14、【分析】记原来三角形的面积为s,第一个小三角形的面积为,第二个小三角形的面积为,…,求出,,,探究规律后即可解决问题.【详解】解:记原来三角形的面积为s,第一个小三角形的面积为,第二个小三角形的面积为,…,∵,,,∴,∴.故答案为:.【点睛】本题考查了三角形中位线定理,三角形的面积,图形类规律探索等知识,解题的关键是循环从特殊到一般的探究方法,寻找规律,利用规律即可解决问题.15、1【分析】求出次品所占的百分比,即可求出1000件中次品的件数.【详解】解:1000×=1(件),故答案为:1.【点睛】考查样本估计总体,求出样本中次品所占的百分比是解题的关键.16、【详解】解:选中女生的概率是:.17、1【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,
∴A、B两地的实际距离3×500000=100000cm=1km,
故答案为1.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.18、x1=x2=2【分析】根据配方法即可解方程.【详解】解:x2﹣4x+4=0(x-2)2=0∴x1=x2=2【点睛】本题考查了用配方法解一元二次方程,属于简单题,选择配方法是解题关键.三、解答题(共66分)19、(1)答案见解析;(2)答案见解析;(3)(1,0)【分析】(1)首先将A、B、C三点分别向右平移3个单位,再向上平移1个单位,得A1、B1、C1三点,顺次连接这些点,即可得到所求作的三角形;(2)找出点B、C绕点A顺时针旋转90°的位置,然后顺次连接即可;(3)△A′B′C′与△ABC是中心对称图形,连接对应点即可得出答案.【详解】解:(1)将A,B,C,分别右平移3个单位长度,再向上平移1个单位长度,可得出平移后的△A1B1C1;(2)将△A1B1C1三顶点A1,B1,C1,绕原点旋转90°,即可得出△A2B2C2;(3)∵△A′B′C′与△ABC是中心对称图形,连接AA′,BB′CC′可得出交点:(1,0),故答案为(1,0).【点睛】本题考查作图-旋转变换;作图-平移变换,掌握图形变化特点,数形结合思想解题是关键.20、,.【分析】过C作CQ∥AD,交GH于N,交EF于M,交AB于Q,则可判断四边形AQCD为平行四边形,所以AQ=CD=6,同理可得EM=EM=CD=6,则BQ=AB-AQ=6,再利用平行线分线段成比例定理得到DE:EG:GA=CF:HF:HB=3:4:5,然后根据平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例得到MF:BQ=CF:CB=3:12,NH:BQ=CH:CB=7:12,则可计算出MF和NH,从而得到GH和EF的长【详解】解:过作,交于点,交于点,交于,如图,∵,∴四边形为平行四边形.∴,同理可得.∴.∵,∴.∵,∴,.∴,.∴,.故答案为,.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.21、(1);(2)销售单价应为元或元;(3)定价每件元时,每月销售新产品的利润最大.【分析】(1)根据:月利润=(销售单价-成本价)×销售量,从而列出关系式;(2)令w=2000,然后解一元二次方程,从而求出销售单价;(3)把(1)中得到的解析式及配方,利用二次函数的性质解答即可.【详解】(1),(2)由题意得,,解得:,,∴每月想要获得元的利润,销售单价应为元或元.(3),∵,∴当时,有最大值,答:定价每件元时,每月销售新产品的利润最大.【点睛】本题考查了二次函数的应用,销售问题的数量关系:利润=每件利润×销售量的运用,二次函数与一元二次方程的关系以及二次函数的性质,解答时求出函数的解析式是关键.22、(1)10%;(2)选择方案①更优惠.【分析】(1)此题可以通过设出平均每次下调的百分率为,根据等量关系“起初每平米的均价下调百分率)下调百分率)两次下调后的均价”,列出一元二次方程求出.(2)对于方案的确定,可以通过比较两种方案得出的费用:①方案:下调后的均价两年物业管理费②方案:下调后的均价,比较确定出更优惠的方案.【详解】解:(1)设平均每次降价的百分率是,依题意得,解得:,(不合题意,舍去).答:平均每次降价的百分率为.(2)方案①购房优惠:4050×120×(1-0.98)=9720(元)方案②购房优惠:70×120=8400(元)9720(元)>8400(元)答:选择方案①更优惠.【点睛】本题结合实际问题考查了一元二次方程的应用,根据题意找准等量关系从而列出函数关系式是解题的关键.23、(1)见解析(2).【分析】连接OB,由sin∠OCB=求出∠OCB=45,再根据OB=OC及三角形的内角和求出∠BOC=90,再由四边形OABC为平行四边形,得出∠ABO=90即OB⊥AB,由此切线得到证明;(2)先求出半径,再由-S△BOC即可求出阴影部分的面积.【详解】连接OB,∵sin∠OCB=,∴∠OCB=45,∵OB=OC,∴∠OBC=∠OCB=45,∴∠BOC=90,∵四边形OABC为平行四边形,∴OC∥AB,∴∠ABO=90,即OB⊥AB,∴AB与⊙O相切;(2)在Rt△OBC中,BC=10,sin∠OCB=,∴,∴-S△BOC=.【点睛】此题考查圆的切线的判定定理、圆中阴影面积的求法,切线的判定口诀:有交点,连半径,证垂直;无交点,作垂直,证半径,熟记口诀并熟练用于解题是关键.在求阴影面积时,直线放在三角形或多边形中,弧线放在扇形中,再根据面积加减的关系求得.24、(1)DE=2cm;(2)这个过程中,点E滑动的距离(18-6)cm.【解析】(1)如图1中,作DH⊥BE于H.求出DH,BH即可解决问题.(2)解直角三角形求出BE即可解决问题.【详解】(1)如图1中,作DH⊥BE于H.在Rt△BDH中,∵∠DHB=90°,BD=4cm
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省汕头市潮南区陈店实验2024-2025学年九年级上学期11月期中考试数学试题
- 梅州企业环保整改方案
- 客运品牌创建方案
- 2024年陕西省中考物理试题(A卷)含答案
- 2012年7月2日下午面试真题
- 福建公务员面试模拟15
- 山东省行政职业能力测验模拟27
- 第三章+第二节+早期情绪的产生(教案)-《幼儿心理学》(人教版第二版)
- 海南省公务员面试真题汇编6
- 广东行政职业能力模拟48
- 养老机构(养老院)全套服务管理实用手册
- 企业文化管理第八章企业文化的比较与借鉴
- 有机肥料投标方案(技术标)
- 制冷考试题试卷
- 预埋件制作检验批质量验收记录
- 校园网络工程方案设计
- 工商银行申请表
- 河南省湘豫名校联考2023-2024学年高三上学期11月期中考试英语试题【含答案解析】
- 员工自驾出行免责声明书范本
- 生物炭及生物炭基肥在农业中的应用研究进展
- 概率论(华南农业大学)智慧树知到课后章节答案2023年下华南农业大学
评论
0/150
提交评论