版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Advancementsincontinental
powersystemplanningforAfrica
MethodologicalframeworkoftheAfricanContinentalPowerSystemsMasterplan’sSPLAT-CMPmodel2023
©IRENA2024
Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.
ISBN:978-92-9260-605-3
CITATION
IRENA(2024),AdvancementsincontinentalpowersystemplanningforAfrica,InternationalRenewableEnergyAgency,AbuDhabi.
Availablefordownload:
/publications
.
Forfurtherinformationortoprovidefeedback,pleasecontactIRENAat
info@
.
ABOUTIRENA
TheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfuture,andservesastheprincipalplatformforinternationalco-operation,acentreofexcellence,andarepositoryofpolicy,technology,resourceandfinancialknowledgeonrenewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergyinthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.
ACKNOWLEDGEMENTS
ThisreportwaspreparedbyIRENAincollaborationwiththeInternationalAtomicEnergyAgency(IAEA),undertheguidanceofAsamiMiketaandLarissaPinheiroPupoNogueira(IRENA),bythefollowingauthors:SebastianHendrikSterl(IRENAconsultant),BilalHussain(IRENA),MohamedBassamBenTicha(ex-IRENAconsultant),HimalayaBirShrestha(IRENA),andBrunoMerven(IRENAconsultant).
ThereportbenefitedfromthereviewsandcommentsprovidedbyDanielRusso,NolwaziKhumalo,PaulKomor,AthirNouicerandSeánCollins(IRENA),MarioTot(IAEA),TichakundaSimbiniandTonderayiGumunyu(AUDA-NEPAD),GeorgeGiannakidisandThyrsosHadjicostas(EUGTAF),AlessiaDeVita,GildasSigginiandEneSandraMacharm(GIZ/GET.Transform),MaximilianParzen(PyPSAmeetsEarth),DavideFioriti(PyPSAmeetsEarthandUniversitàdiPisa),MikaelTogebyandcolleagues(DanishEmbassyinEthiopia/EaEnergianalyse),IoannisPappis(SE4All),TomRemyandClaireNicolas(WorldBank),andTrieuMai,AmyRose,PatrickBrownandJarradWright(NREL).
PublicationsandcommunicationssupportwereprovidedbyFrancisField,StephanieClarkeandDariaGazzola.ThereportwaseditedbyJustinFrench-Brooks,withdesignprovidedbyPhoenixDesignAid.
DISCLAIMER
Thispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.
TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.
IRENA
InternationalRenewableEnergyAgency
Advancementsincontinental
powersystemplanningforAfrica
MethodologicalframeworkoftheAfricanContinentalPowerSystemsMasterplan’sSPLAT-CMPmodel2023
CONTENTS
ABBREVIATIONS 6
ABOUTTHISREPORT 8
1.THESPLAT-CMPMODELFORTHEAFRICANCONTINENTALPOWERSYSTEMS
MASTERPLAN 11
2.ELEMENTSOFSPLAT-CMPMODELDESIGN 13
2.1Powersystemdescription 13
2.2Modellingmethodologyupdates:Constraintsatthesystemandcountrylevel 16
2.3Modellingmethodologyupdates:Powergeneration 20
2.4Modellingmethodologyupdates:Cross-borderpowertransmission 28
2.5Modellingmethodologyupdates:Representationofstorage 31
2.6Summary 32
3.STRATEGIESFORRUNNINGSPLAT-CMPMODELS 34
4.MODELVERSIONCONTROL 39
5.POSSIBLEFUTUREAREASOFWORK/STRATEGIESFORIMPROVEMENT 41
6.CONCLUSION/OUTLOOK 43
DATAAVAILABILITYSTATEMENT 44
ACKNOWLEDGEMENTS 44
REFERENCES 45
APPENDIX 49
4|ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA
FIGURES
Figure1SchematicoverviewoftheRES(ReferenceEnergySystem)ofeachcountrynode
intheSPLAT-CMPmodel 14
Figure2ThetranslationofreservoirhydropowerdatafromtheAfREP-hydrodatabasetothe
SPLAT-CMPmodel 22
Figure3:GeospatialoverviewoftheareasforsolarPV,CSP,onshorewindandoffshore
windpowergenerationincludedintheSPLAT-CMPmodelthroughIRENA’s
MSRapproach 26
Figure4(a)Surgeimpedanceloading(inMW)asafunctionofinterconnectorvoltagelevel,
and(b)lineloadability(asafractionofsurgeimpedanceloading)asafunctionof
interconnectorlength 30
Figure5(a)GenericinterconnectorunitcostsasusedinSPLAT-CMP.(b)Efficiencyofgeneric
interconnectorsasusedinSPLAT-CMP,includinglinelossesandconverterlosses 30
Figure6GraphicalrepresentationofthevariousmodellingelementsoftheSPLAT-CMPmodel 33
Figure7TheCFpertimesliceofSouthAfrica’sonshorewindMSRcluster#2 36
Figure8Effectofspatialspreadonweakwindseasons 37
Figure9ScreenshotfromtheSPLAT-CMPrepositoryon 39
TABLES
Table1Overviewofreservemargincontributionsofthevarioustechnologytypesusedin
theSPLAT-CMPmodelfortheCMPprocess 17
Table2Translationofgenericinterconnectordistancecategoriestovoltagelevelcategories
asusedintheSPLAT-CMPmodelsetup 29
Table3Summaryofhowthenumberofvariables,constraintsandnon-zeromatrixelements
changewiththenumberoftimeslicesintheSPLAT-CMPmodelusedfortheCMP 34
BOXES
Box1AnalysesandtoolsinvolvedinthefirstCMPexercise 9
Box2ToolselectionconsiderationsoftheCMPstakeholders(AUDA-NEPAD,2023c) 10
Box3PotentialmethodstoinvestigatewindvariabilityaspectsintheSPLAT-CMPmodel
forfutureassessments 36
ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA|5
ABBREVIATIONS
AC
alternatingcurrent
ACEC
AfricanCleanEnergyCorridor
AfREP
AfricanRenewableElectricityProfiles
AfSEM
AfricanSingleElectricityMarket
AU
AfricanUnion
AUDA-NEPAD
AfricanUnionDevelopmentAgency–NewPartnershipforDevelopment
CAPEX
capitalexpenditure
CAPP
CentralAfricanPowerPool
CCGT
closed-cyclegasturbine
CF
capacityfactor
CMP
ContinentalMasterplan
COMELEC
ComitéMaghrébind’Électricité
CSP
concentratedsolarpower
DNI
directnormalirradiation
EAPP
EasternAfricaPowerPool
EEZ
ExclusiveEconomicZone
EU
EuropeanUnion
EUGTAF
EuropeanUnionGlobalTechnicalAssistanceFacility
GHI
globalhorizontalirradiation
HFO
heavyfueloil
HVAC
high-voltagealternatingcurrent
HVDC
high-voltagedirectcurrent
IAEA
InternationalAtomicEnergyAgency
IIASA
InternationalInstituteforAppliedSystemsAnalysis
IRENA
InternationalRenewableEnergyAgency
kW
kilowatt
LCOE
levelisedcostofelectricity
LL
lineloadability
MESSAGE
ModelforEnergySupplyStrategyAlternativesandtheirGeneralEnvironmentalImpact
MSR
ModelSupplyRegion
6|ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA
MW
megawatt
MWh
megawatthour
NREL
NationalRenewableEnergyLaboratory(US)
OCGT
open-cyclegasturbine
OSeMOSYS
OpenSourceEnergyModellingSystem
PV
photovoltaics
RCP
RepresentativeConcentrationPathway
RoR
run-of-river
SAPP
SouthernAfricaPowerPool
SIL
surgeimpedanceloading
SM
solarmultiple
SNSP
systemnon-synchronouspenetration
SPLAT
SystemPlanningTest
SSP
SharedSocioeconomicPathway
TW
terawatt
UN
UnitedNations
USD
UnitedStatesdollar
VRE
variablerenewableenergy
WAPP
WestAfricanPowerPool
WETO
WorldEnergyTransitionsOutlook
WACC
weightedaveragecostofcapital
ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA|7
ABOUTTHISREPORT
ThisreportprovidesdetailedinsightsintothedesignandsetupoftheSystemPlanningTest-ContinentalMasterplan(SPLAT-CMP)model,theunderlyingoptimisationmodeloftheAfricaContinentalMasterPlan(CMP)forelectricitygenerationandtransmission.CMPisaninitiativetaskedtotheAfricanUnionDevelopmentAgency–NewPartnershipforDevelopment(AUDA-NEPAD)aspertherecommendationsadoptedbytheAfricanheadsofstateatthe34thOrdinarysessionoftheAssemblyofHeadsofStateandGovernmentoftheAfricanUnionin2021.Subsequently,inthe37thOrdinarysessionoftheAssembly,theCMPwasformallyadoptedasanAfricanUnionAgenda2063flagshipproject.
TheCMPinitiativewasundertakentosupporttheAUAfricanSingleElectricityMarket(AfSEM)initiativelaunchedinJune2021.TheAfricanpowerpoolsareactivelyinvolvedintheCMPprocesswithaviewtoaligningmodellingandplanningprocesseswithregionalpoliciesandinitiatives.AlongsidethedesignatedstaffofAUDA-NEPAD,theofficialCMPmodellingteamincludesrepresentativesfromWAPP(WestAfricanPowerPool),SAPP(SouthernAfricanPowerPool),EAPP(EasternAfricaPowerPool),CAPP(CentralAfricanPowerPool),COMELEC(ComitéMaghrébind’Électricité)membercountries,andEU-GlobalTechnicalAssistanceFacility(EU-GTAF).
IRENAandtheIAEAsupporttheCMPinitiativeasofficiallyendorsedmodellingpartners.
ThefirstCMPexerciseentailedthreeplanninganalyses:(i)demandprojections,(ii)generationandcross-bordertransmissionexpansionoptimisation,and(iii)networkstudies(furtherexplainedinBox1).BasedonagreedtoolselectioncriteriafinalisedduringtheconsultationsthatformedpartoftheCMPprocess(Box2),thestakeholdersselectedIRENAandIAEA’sSPLAT-MESSAGEframeworkforthegenerationandcross-bordertransmissionexpansionanalysis.
Tothisend,IRENAcombineditspre-existingpowersystemcapacityexpansionmodelsfor50Africancountries,1theso-calledSystemPlanningTest(SPLAT)models,intooneSPLAT-AfricamodeltoserveasastartingpointforCMPmodelling.Overthecourseoftwoyears,theCMPmodellingteamreceivedhands-ontrainingfromthemodellingpartnersonthedevelopmentanduseoftheSPLAT-Africamodel.TheCMPprocessentailedmanyvirtualandin-personstakeholderengagementeventsandday-to-dayteamworkamongthestaffofAUDA-NEPAD,thepowerpoolsandNorthAfricancountryrepresentatives.ThisenabledtheCMPmodellingteamtoupdatetheSPLAT-Africamodelintotheso-calledSPLAT-CMPversion2023.Duringtheprocess,themodelwasequippedwithup-to-dateinformationcollectedon48Africancountries.2
ByprovidingadetaileddescriptionofthemethodologybehindtheSPLAT-CMPmodel,thisreportaimstoenhancethetransparencyandthereproducibilityofthemodellingresults.ItwillalsoenabletheCMPstakeholderstobetterunderstandthemodelresultsandinspireitsfutureuseinthenextCMPexercises.The
1AllAfricaexceptMadagascar,Mauritius,theComorosandtheSeychelles.
2AllSPLATcountriesexceptCaboVerde,andSãoToméandPríncipe.
8|ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA
reportalsocomplementstheeffortsbehindtherecentlydevelopedweb-baseduserguidefortheSPLATinterface,availableat
https://splat-tutorial.readthedocs.io/en/latest/.
TheSPLATinterfaceisanExcelbasedinterfacerequiredtoimplementtheSPLATmodellingframework,aswellastocontrolandvisualisethemodelcontentsandresultsrespectively.
Thefinalmodellingresults–aswellasthemodelinputsandtheirbasis,asfinalisedbytheCMPmodellingteamandagreedwiththebroadstakeholders–aredocumentedinaseparateseriesofreportspreparedwiththefinancialassistanceoftheEuropeanCommission(AUDA-NEPAD,2023a,2023b,2023c).Thereportseriesishostedonlineatthecentraliseddatabase“Mwanga”ofAUDA-NEPAD,developedspecificallytofacilitatedataexchangeamongCMPstakeholdersinthefuture(
/
).
Thisreportisstructuredasfollows:Section1providesanoverallintroductiontotheSPLATmodelframeworkandtherationaleforselectingitforCMPpurposes;Section2describesindetailallnewmodelelementsthatwereintroducedintheSPLAT-CMPmodel;Section3goesontodescribethepracticalitiesofandstrategiesforsettingtimeslicesforrunningtheSPLAT-CMPmodel,allowingforpracticalruntimeswhileretainingadequatespatio-temporalresolution;Section4describesmodelversioncontrol;Section5summarisespossiblestrategiesforfurthermodelimprovement;andSection6concludeswithafutureoutlook.
Box1AnalysesandtoolsinvolvedinthefirstCMPexercise
InthetechnicalplanningforavisionofacontinentallyintegratedAfricanpowergrid,variouselementsneededtobeconsideredseparatelywiththeirownsuitablemodelapproaches.Consequently,inthefirstCMPexercise,AUDA-NEPADwaschargedwithdevelopingthreedistinctpillarsofplanning:
(1)electricitydemandprojectionsforeverycontinentalAfricancountryupto2040
(2)long-termcapacityexpansionplanningscenariosforpowergenerationandcross-bordertransmissioninfrastructureupto2040tomeettheprojecteddemand
(3)networkstudiestoconfirmthetechnicalfeasibilityofthecross-borderinterconnectorsselectedinthecapacityexpansionoptimisationscenarios.
ThedemandassessmentanalysisperformedusingEViewsdefinedthefutureelectricitydemandprojectionsinvariousscenarios.Theseincludedabaselinetrajectoryasreferencecase(AUDA-NEPAD,2023d)andthreealternativescenarios(AUDA-NEPAD,2023e)reflectinglow,mediumandhighaspirationaltargetsonvariousdevelopmentaspects,suchaselectricityaccessratesandper-capitaincomegrowth.
ThepowersystemcapacityexpansionanalysisperformedusingtheSPLAT-MESSAGEframeworkidentifiedcost-optimalprospectsfornewgenerationcapacity,cross-borderinterconnectionandstorageassetsupto2040undervariousscenarios(AUDA-NEPAD,2023a,2023b).Asacapacityexpansionmodel,theSPLAT-CMPmodelmainlyassessedthecostimplicationsassociatedwiththebuildoutofthescenariocapacitieswithoutdeepdivingintotheengineeringaspectsofgridoperation.Nevertheless,certainimportantoperationalandengineeringaspectswereaccountedforinasimplifiedway,i.e.theplanningreserveconstraint(Section2.2.1),theupperboundoninstantpenetrationofvariablerenewables(Section2.2.2),andothers.
ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA|9
Box1AnalysesandtoolsinvolvedinthefirstCMPexercise(continued)
ThenetworkanalysisperformedusingthePSS®EtoolaimedtorefineandvalidatetheSPLAT-CMPresults.Itcarriedoutanengineeringanalysiscoveringsteady-statesystemstudiestoassesspotentialgridreliabilitygaps,suchasthevariouscriticalcontingenciesinvolvinglossofmajorgeneratorsortransmissionlinesacrossdifferentpartsofthecontinentalgridsystem(AUDA-NEPAD,2023f).Advancedstudies,suchastransientandfrequencystabilitystudies,wereoutsidethescopeoftheanalysis.
Inadditiontotheabovethreeanalyses,theCMPexercisealsodevelopedamethodologyforcost–benefit-basedrankingofthecandidategenerationandinterconnectionprojectsofkeyrelevanceinthemediumterm,being2023-2032(AUDA-NEPAD,2023g).Thisanalysiswasusedtoevaluatetheinternalrateofreturn(IRR),netpresentvalue(NPV),andotherfinancialmetrics/indicatorsoftheprojects.ThisanalysisdifferedfromtheSPLAT-CMPanalysisinthesensethatitevaluatedthepriorityoftheprojectsfromaninvestor’sperspectiveinsteadofthesystemvalueperspective.Thecost–benefitstudyaimedtoinformthenextstepsintheCMPprocess,whichwouldfocusonamulti-criteriarankingoftheprojectsfortheirfurtherintegrationintothevariousinfrastructurefacilitationmechanismsinprogressinAfrica.
Box2ToolselectionconsiderationsoftheCMPstakeholders(AUDA-NEPAD,2023c)
WhileselectingthevariousmodelstocarryouttheCMPexercise,theCMPstakeholderspaidparticularattentiontomaintaininguniformitywiththetoolsandmodelsalreadyutilisedand/orselectedforupdatingtheindividualpowerpoolmasterplans.Thedetailedcriteriaincludedthefollowingconsiderations:
i.Functionality:Isthemodelfitforpurposeforthejobtobeundertakenandcanthemodelhandleallthemajorissuesthatneedtobemodelled?
ii.Costoflicences:Isthecostofpotentiallicencesprohibitive,giventheneedfortrainingforagivennumberofpersonnelandtheneedforthemaintenanceofdatabases?
iii.Transparencyofthemodel:Isthemodellingmethodologysufficientlydocumented?Canitbeusedtounderstandtheexpectedoutcomesofthemodel?
iv.Reliabilityofthemodel:Canthemodelbeusedtoconfirm/validateknownoutcomesfrompastmodellingapproaches?Canitrunproperlywithoutnon-convergenceissues,andwouldtheresultsremaininsensitivetodifferentmodelversions?
v.User-friendlinessofthemodel:
–Candataeasilybeenteredinthemodel,includingbulkchanges,andcantheresultsbemadeavailableinanaccessibleformatthatcanbedirectlyusedinreportsorpresentations?
–Doesthemodelhavearobuststandardsetofplotsandtablestoallowtheresultstobereviewedinanaccessiblemanner?
–Doesthemodelproducereportsthatcanbeeasilycustomisedforvariousapplications?
–Doesthemodelhavea(graphical)interface?
10|ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA
1.THESPLAT-CMPMODELFOR
THEAFRICANCONTINENTAL
POWERSYSTEMSMASTERPLAN
TheSPLATmodelsarecountry-specificgenerationcapacityexpansionmodelscoveringtheentireAfricancontinentandareroutinelyusedbyIRENAfornationalandregionalcapacity-buildingprogrammesinAfrica
(IRENA,n.d.a),andthePlanningandProspectsforRenewablePowerinAfricaanalyses(IRENA,n.d.b).TheSPLATmodelswerecreatedutilisingamodelgeneratorcalledtheModelforEnergySupplyStrategyAlternativesandtheirGeneralEnvironmentalImpact(MESSAGE).MESSAGEisaversatile,adaptable,bottom-up,multi-yearenergysystemmodelthatutiliseslinearandmixed-integeroptimisationtechniques.ItwasfirstestablishedbytheInternationalInstituteofAppliedSystemAnalysis(IIASA),buthasbeensubsequentlyimprovedbytheInternationalAtomicEnergyAgency(IAEA).
Formodellingpowersystems,theMESSAGEsoftwareneedsaprojectionofdemand,adatabaseofcurrentcapitalassetsforpowergenerationandtransmission,technicalandeconomicspecificationsofpowersupplytechnologies,andalist(alongwithtechnicalandeconomicspecifications)offutureinvestmentoptionsforpowergenerationandtransmissionforthemodeltoinvestin.MESSAGEaimstominimisethenetpresentvalue(subjecttoauser-definedoveralldiscountrate)oftotalsystemcostsincurredtomeetauser-definedlevelofdemandoveragivenplanninghorizonandunderaspecificsetofassumptions.AMESSAGEuserguidecourtesyoftheIAEAispubliclyavailable(IAEA,2016).MESSAGEisafree-of-costtoolforIAEAmemberstatesandsupportsworkingwithfreeprogrammingsolvers.
Startingfromthepowerinfrastructureinachosenbaseyearinagivenregion,aMESSAGE-basedmodelcomputesaprogressionofpossibletechnologycombinationsperperiod(user-defined;typicallyyearly)thatcanachievethelowest-costobjectiveacrosstheplanningphasetomeetuser-defineddemandandconstraints.Theconstraintscanrepresenttechnicalconstraintslinkedtopowersystemoperation,butmayalsopolicyassumptionsthatreflectscenariostorylines.Whilethemodelcantechnicallyrunatfullhourlyresolution,itistypicallyrunusingtimeslice-basedapproachestoavoidunrealisticcomputationalrequirements(seeSection3formoredetails).Thesetimeslicesusuallyrepresent“common”dailyandseasonalvariabilitiesinpowergenerationanddemand.
Themodelproducesthelowesttotaldiscountedcost3ofthesystem,whichincludesinvestment,operationandmaintenance,fuel,andanyothercostsdefinedbytheuser(e.g.penaltiesongreenhousegasemissions;costsofunmetdemand).Additionally,itensuresthatallsystemrequirementsaremet,suchassufficientresourcesandcapacitytoachievedesiredproductionlevels,meetingauser-definedreservemargin,orstayingwithinuser-definedtechnologydeploymentlimits,aswellasanypolicyobjectivesthattheusermaydefine(e.g.renewableenergytargets,CO2emissionlimits,speedoftechnologyrollout).
3Discountingisaprocessofconvertingacostvalueprojectedtoincurinthefutureintoanequivalentcurrentvalue.IntheCMPmodel,thebaseyearof2019reflectsthe“current”,andthevariouscostsanticipatedtoincurindifferentyearsacrossthestudyperiodarebroughtto2019equivalentsassumingafixeddiscountratedescribedinSection2.3.4
ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA|11
TheSPLAT-CMPmodelwasdesignedinaversatileandflexiblewaytocontrolmodelinputsandoutputs,andallowconfigurationofrunswithanycombinationofAfricancountries.Theultimategoalwastorunscenariosatthecontinentallevelandexaminesuggestedinvestmentstrategiesinnewgenerationandcross-bordertransmissionprojectsundervariousscenarios.ThemodelwasestablishedbymergingpreviousversionsoftheSPLATmodelforindividualAfricanpowerpools,documentedinIRENA’sreportseriesonplanningandprospectsforrenewablepowerinAfrica:SPLAT-WfortheWestAfricanPowerPool(IRENA,2018),SPLAT-ACECfortheAfricanCleanEnergyCorridor,consistingoftheEasternandSouthernAfricanpowerpools
(IRENA,2021a),SPLAT-CfortheCentralAfricanPowerPool(IRENA,2021b),andSPLAT-NforNorthAfricaincludingCOMELECcountries(IRENA,2023b).
TheSPLAT-CMPmodelincludesanumberofupdatesascomparedtopreviousSPLATmodels,andsomestate-of-the-artmodellingfeaturesthatmaybenefittheenergymodellingcommunity.
12|ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA
2.ELEMENTSOFSPLAT-CMPMODELDESIGN
2.1POWERSYSTEMDESCRIPTION
InthespiritofpreviousSPLATmodels,theSPLAT-CMPmodelinitssimplestformcanberepresentedasfollows.Eachcountryisrepresentedasasinglenodecontainingdifferentenergy“levels”,whichrepresentenergyattheresourcelevel(primary),energyconvertedintoelectricitybypowerplants(secondary),electricityatthetransmissionlevel(tertiary),andelectricityatthedistributionlevel(final).Theseenergylevels,alongwithvariousothermodelelements(seebelow),areschematicallyshowninFigure1.
Theprimarylevelrepresentstheavailabilityofresources(measuredintermsofprimaryenergysupply)ateachcountrynodelevel.Theavailabilityoftheseresourcesisdeterminedbothbydomesticresourcesaswellasacountry’scapacityforimports,i.e.byexogenousconstraints.Fuelpricesareexogenouslysetatthislevel.IntheSPLATmodels,asadefault,fuelpricesaredifferentiatedbyfueltypeandbylocalproductionversusimports,butnotdifferentiatedonacountrybasis(i.e.country-levelsubsidiesorotherpricedistortionsarenotreflectedinthemodel).
Thesecondarylevelisthemostimportantinthemodel,asitcontainsallthepowergenerationassetswithinacountrythatconvertaresource(primarylevel)intoelectricityreadytofeedintothetransmissiongrid(tertiarylevel).Itnotonlycontainsexistingpowergenerationassets,butalsocommittedassets(specificplantsthatarenotonlineyet,butwhichareconsideredascomingonlineinthefuturewithcompletecertaintyinaknownyear;thedefinitionofcommittedaccordingtotheCMPplanningprocessisaplantthathasreachedfinancialclose)aswellasallcandidatetechnologies,amongwhichthemodelcanchooseaselectiontocoverthefuturesupply–demandgap.Inadditiontouser-definedcandidatecapacity,SPLAT-CMPmodelentailspre-loadedgenericcandidatesupplyoptionsformostgenerationtechnologiestoallowtheusertodesigntheexpansionoptimisationaccordingtospecificscenariodefinitions.
Foralltechnologiesthatareduetocomeonlineinthefuture,aconstructiontime(numberofyears)isassumed,andtheoptimisationthusaccountsfortheconstructionstartingbeforetheyearofdeployment.Theinterestexpenseduringconstructioniscomputedbythemodelassumingthattheovernightcapitalexpenseisdistributedequallyduringtheconstructionperiod(includingtheyearinwhichthetechnologycomesonline).Theinterestexpensetogetherwiththeovernightcapitalexpenseofthetechnologyiseventuallyannualisedandtheresultingannualisedcostsincurringeachyearduringtheprojectlifeperiodarebroughttoacommonbaseyearbydiscounting(seeSection2.3.4formoredetailsondiscountrateparameter)forthepurposeofmakingoptimizationdecisions.Theconstructiontimesdifferbytechnology,representingthecomplexityoftheengineeringinvolvedindifferenttypesofpowerplants.Wenotethatonlyengineeringconstructiontimeswereconsidered,whereasinreality,planningandregulatoryapprovalstendtotake(substantially)moretime,especiallyfornuclearpowerplantsandlargehydropowerplants.
ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA|13
Figure1SchematicoverviewoftheRES(ReferenceEnergySystem)ofeachcountrynodein
theSPLAT-CMPmodel
Secondary
User-definedexisting,committedandcandidatesandpre-loadedgenericcandidates
Gas-firedplantsOCGT/CCGT**
Coal-firedplants**
HFO-firedplants*
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论