IRENA-非洲大陆电力系统规划进展 Advancements in continental power system planning for Africa 2024_第1页
IRENA-非洲大陆电力系统规划进展 Advancements in continental power system planning for Africa 2024_第2页
IRENA-非洲大陆电力系统规划进展 Advancements in continental power system planning for Africa 2024_第3页
IRENA-非洲大陆电力系统规划进展 Advancements in continental power system planning for Africa 2024_第4页
IRENA-非洲大陆电力系统规划进展 Advancements in continental power system planning for Africa 2024_第5页
已阅读5页,还剩100页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Advancementsincontinental

powersystemplanningforAfrica

MethodologicalframeworkoftheAfricanContinentalPowerSystemsMasterplan’sSPLAT-CMPmodel2023

©IRENA2024

Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.

ISBN:978-92-9260-605-3

CITATION

IRENA(2024),AdvancementsincontinentalpowersystemplanningforAfrica,InternationalRenewableEnergyAgency,AbuDhabi.

Availablefordownload:

/publications

.

Forfurtherinformationortoprovidefeedback,pleasecontactIRENAat

info@

.

ABOUTIRENA

TheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfuture,andservesastheprincipalplatformforinternationalco-operation,acentreofexcellence,andarepositoryofpolicy,technology,resourceandfinancialknowledgeonrenewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergyinthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.

ACKNOWLEDGEMENTS

ThisreportwaspreparedbyIRENAincollaborationwiththeInternationalAtomicEnergyAgency(IAEA),undertheguidanceofAsamiMiketaandLarissaPinheiroPupoNogueira(IRENA),bythefollowingauthors:SebastianHendrikSterl(IRENAconsultant),BilalHussain(IRENA),MohamedBassamBenTicha(ex-IRENAconsultant),HimalayaBirShrestha(IRENA),andBrunoMerven(IRENAconsultant).

ThereportbenefitedfromthereviewsandcommentsprovidedbyDanielRusso,NolwaziKhumalo,PaulKomor,AthirNouicerandSeánCollins(IRENA),MarioTot(IAEA),TichakundaSimbiniandTonderayiGumunyu(AUDA-NEPAD),GeorgeGiannakidisandThyrsosHadjicostas(EUGTAF),AlessiaDeVita,GildasSigginiandEneSandraMacharm(GIZ/GET.Transform),MaximilianParzen(PyPSAmeetsEarth),DavideFioriti(PyPSAmeetsEarthandUniversitàdiPisa),MikaelTogebyandcolleagues(DanishEmbassyinEthiopia/EaEnergianalyse),IoannisPappis(SE4All),TomRemyandClaireNicolas(WorldBank),andTrieuMai,AmyRose,PatrickBrownandJarradWright(NREL).

PublicationsandcommunicationssupportwereprovidedbyFrancisField,StephanieClarkeandDariaGazzola.ThereportwaseditedbyJustinFrench-Brooks,withdesignprovidedbyPhoenixDesignAid.

DISCLAIMER

Thispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.

TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.

IRENA

InternationalRenewableEnergyAgency

Advancementsincontinental

powersystemplanningforAfrica

MethodologicalframeworkoftheAfricanContinentalPowerSystemsMasterplan’sSPLAT-CMPmodel2023

CONTENTS

ABBREVIATIONS 6

ABOUTTHISREPORT 8

1.THESPLAT-CMPMODELFORTHEAFRICANCONTINENTALPOWERSYSTEMS

MASTERPLAN 11

2.ELEMENTSOFSPLAT-CMPMODELDESIGN 13

2.1Powersystemdescription 13

2.2Modellingmethodologyupdates:Constraintsatthesystemandcountrylevel 16

2.3Modellingmethodologyupdates:Powergeneration 20

2.4Modellingmethodologyupdates:Cross-borderpowertransmission 28

2.5Modellingmethodologyupdates:Representationofstorage 31

2.6Summary 32

3.STRATEGIESFORRUNNINGSPLAT-CMPMODELS 34

4.MODELVERSIONCONTROL 39

5.POSSIBLEFUTUREAREASOFWORK/STRATEGIESFORIMPROVEMENT 41

6.CONCLUSION/OUTLOOK 43

DATAAVAILABILITYSTATEMENT 44

ACKNOWLEDGEMENTS 44

REFERENCES 45

APPENDIX 49

4|ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA

FIGURES

Figure1SchematicoverviewoftheRES(ReferenceEnergySystem)ofeachcountrynode

intheSPLAT-CMPmodel 14

Figure2ThetranslationofreservoirhydropowerdatafromtheAfREP-hydrodatabasetothe

SPLAT-CMPmodel 22

Figure3:GeospatialoverviewoftheareasforsolarPV,CSP,onshorewindandoffshore

windpowergenerationincludedintheSPLAT-CMPmodelthroughIRENA’s

MSRapproach 26

Figure4(a)Surgeimpedanceloading(inMW)asafunctionofinterconnectorvoltagelevel,

and(b)lineloadability(asafractionofsurgeimpedanceloading)asafunctionof

interconnectorlength 30

Figure5(a)GenericinterconnectorunitcostsasusedinSPLAT-CMP.(b)Efficiencyofgeneric

interconnectorsasusedinSPLAT-CMP,includinglinelossesandconverterlosses 30

Figure6GraphicalrepresentationofthevariousmodellingelementsoftheSPLAT-CMPmodel 33

Figure7TheCFpertimesliceofSouthAfrica’sonshorewindMSRcluster#2 36

Figure8Effectofspatialspreadonweakwindseasons 37

Figure9ScreenshotfromtheSPLAT-CMPrepositoryon 39

TABLES

Table1Overviewofreservemargincontributionsofthevarioustechnologytypesusedin

theSPLAT-CMPmodelfortheCMPprocess 17

Table2Translationofgenericinterconnectordistancecategoriestovoltagelevelcategories

asusedintheSPLAT-CMPmodelsetup 29

Table3Summaryofhowthenumberofvariables,constraintsandnon-zeromatrixelements

changewiththenumberoftimeslicesintheSPLAT-CMPmodelusedfortheCMP 34

BOXES

Box1AnalysesandtoolsinvolvedinthefirstCMPexercise 9

Box2ToolselectionconsiderationsoftheCMPstakeholders(AUDA-NEPAD,2023c) 10

Box3PotentialmethodstoinvestigatewindvariabilityaspectsintheSPLAT-CMPmodel

forfutureassessments 36

ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA|5

ABBREVIATIONS

AC

alternatingcurrent

ACEC

AfricanCleanEnergyCorridor

AfREP

AfricanRenewableElectricityProfiles

AfSEM

AfricanSingleElectricityMarket

AU

AfricanUnion

AUDA-NEPAD

AfricanUnionDevelopmentAgency–NewPartnershipforDevelopment

CAPEX

capitalexpenditure

CAPP

CentralAfricanPowerPool

CCGT

closed-cyclegasturbine

CF

capacityfactor

CMP

ContinentalMasterplan

COMELEC

ComitéMaghrébind’Électricité

CSP

concentratedsolarpower

DNI

directnormalirradiation

EAPP

EasternAfricaPowerPool

EEZ

ExclusiveEconomicZone

EU

EuropeanUnion

EUGTAF

EuropeanUnionGlobalTechnicalAssistanceFacility

GHI

globalhorizontalirradiation

HFO

heavyfueloil

HVAC

high-voltagealternatingcurrent

HVDC

high-voltagedirectcurrent

IAEA

InternationalAtomicEnergyAgency

IIASA

InternationalInstituteforAppliedSystemsAnalysis

IRENA

InternationalRenewableEnergyAgency

kW

kilowatt

LCOE

levelisedcostofelectricity

LL

lineloadability

MESSAGE

ModelforEnergySupplyStrategyAlternativesandtheirGeneralEnvironmentalImpact

MSR

ModelSupplyRegion

6|ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA

MW

megawatt

MWh

megawatthour

NREL

NationalRenewableEnergyLaboratory(US)

OCGT

open-cyclegasturbine

OSeMOSYS

OpenSourceEnergyModellingSystem

PV

photovoltaics

RCP

RepresentativeConcentrationPathway

RoR

run-of-river

SAPP

SouthernAfricaPowerPool

SIL

surgeimpedanceloading

SM

solarmultiple

SNSP

systemnon-synchronouspenetration

SPLAT

SystemPlanningTest

SSP

SharedSocioeconomicPathway

TW

terawatt

UN

UnitedNations

USD

UnitedStatesdollar

VRE

variablerenewableenergy

WAPP

WestAfricanPowerPool

WETO

WorldEnergyTransitionsOutlook

WACC

weightedaveragecostofcapital

ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA|7

ABOUTTHISREPORT

ThisreportprovidesdetailedinsightsintothedesignandsetupoftheSystemPlanningTest-ContinentalMasterplan(SPLAT-CMP)model,theunderlyingoptimisationmodeloftheAfricaContinentalMasterPlan(CMP)forelectricitygenerationandtransmission.CMPisaninitiativetaskedtotheAfricanUnionDevelopmentAgency–NewPartnershipforDevelopment(AUDA-NEPAD)aspertherecommendationsadoptedbytheAfricanheadsofstateatthe34thOrdinarysessionoftheAssemblyofHeadsofStateandGovernmentoftheAfricanUnionin2021.Subsequently,inthe37thOrdinarysessionoftheAssembly,theCMPwasformallyadoptedasanAfricanUnionAgenda2063flagshipproject.

TheCMPinitiativewasundertakentosupporttheAUAfricanSingleElectricityMarket(AfSEM)initiativelaunchedinJune2021.TheAfricanpowerpoolsareactivelyinvolvedintheCMPprocesswithaviewtoaligningmodellingandplanningprocesseswithregionalpoliciesandinitiatives.AlongsidethedesignatedstaffofAUDA-NEPAD,theofficialCMPmodellingteamincludesrepresentativesfromWAPP(WestAfricanPowerPool),SAPP(SouthernAfricanPowerPool),EAPP(EasternAfricaPowerPool),CAPP(CentralAfricanPowerPool),COMELEC(ComitéMaghrébind’Électricité)membercountries,andEU-GlobalTechnicalAssistanceFacility(EU-GTAF).

IRENAandtheIAEAsupporttheCMPinitiativeasofficiallyendorsedmodellingpartners.

ThefirstCMPexerciseentailedthreeplanninganalyses:(i)demandprojections,(ii)generationandcross-bordertransmissionexpansionoptimisation,and(iii)networkstudies(furtherexplainedinBox1).BasedonagreedtoolselectioncriteriafinalisedduringtheconsultationsthatformedpartoftheCMPprocess(Box2),thestakeholdersselectedIRENAandIAEA’sSPLAT-MESSAGEframeworkforthegenerationandcross-bordertransmissionexpansionanalysis.

Tothisend,IRENAcombineditspre-existingpowersystemcapacityexpansionmodelsfor50Africancountries,1theso-calledSystemPlanningTest(SPLAT)models,intooneSPLAT-AfricamodeltoserveasastartingpointforCMPmodelling.Overthecourseoftwoyears,theCMPmodellingteamreceivedhands-ontrainingfromthemodellingpartnersonthedevelopmentanduseoftheSPLAT-Africamodel.TheCMPprocessentailedmanyvirtualandin-personstakeholderengagementeventsandday-to-dayteamworkamongthestaffofAUDA-NEPAD,thepowerpoolsandNorthAfricancountryrepresentatives.ThisenabledtheCMPmodellingteamtoupdatetheSPLAT-Africamodelintotheso-calledSPLAT-CMPversion2023.Duringtheprocess,themodelwasequippedwithup-to-dateinformationcollectedon48Africancountries.2

ByprovidingadetaileddescriptionofthemethodologybehindtheSPLAT-CMPmodel,thisreportaimstoenhancethetransparencyandthereproducibilityofthemodellingresults.ItwillalsoenabletheCMPstakeholderstobetterunderstandthemodelresultsandinspireitsfutureuseinthenextCMPexercises.The

1AllAfricaexceptMadagascar,Mauritius,theComorosandtheSeychelles.

2AllSPLATcountriesexceptCaboVerde,andSãoToméandPríncipe.

8|ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA

reportalsocomplementstheeffortsbehindtherecentlydevelopedweb-baseduserguidefortheSPLATinterface,availableat

https://splat-tutorial.readthedocs.io/en/latest/.

TheSPLATinterfaceisanExcelbasedinterfacerequiredtoimplementtheSPLATmodellingframework,aswellastocontrolandvisualisethemodelcontentsandresultsrespectively.

Thefinalmodellingresults–aswellasthemodelinputsandtheirbasis,asfinalisedbytheCMPmodellingteamandagreedwiththebroadstakeholders–aredocumentedinaseparateseriesofreportspreparedwiththefinancialassistanceoftheEuropeanCommission(AUDA-NEPAD,2023a,2023b,2023c).Thereportseriesishostedonlineatthecentraliseddatabase“Mwanga”ofAUDA-NEPAD,developedspecificallytofacilitatedataexchangeamongCMPstakeholdersinthefuture(

/

).

Thisreportisstructuredasfollows:Section1providesanoverallintroductiontotheSPLATmodelframeworkandtherationaleforselectingitforCMPpurposes;Section2describesindetailallnewmodelelementsthatwereintroducedintheSPLAT-CMPmodel;Section3goesontodescribethepracticalitiesofandstrategiesforsettingtimeslicesforrunningtheSPLAT-CMPmodel,allowingforpracticalruntimeswhileretainingadequatespatio-temporalresolution;Section4describesmodelversioncontrol;Section5summarisespossiblestrategiesforfurthermodelimprovement;andSection6concludeswithafutureoutlook.

Box1AnalysesandtoolsinvolvedinthefirstCMPexercise

InthetechnicalplanningforavisionofacontinentallyintegratedAfricanpowergrid,variouselementsneededtobeconsideredseparatelywiththeirownsuitablemodelapproaches.Consequently,inthefirstCMPexercise,AUDA-NEPADwaschargedwithdevelopingthreedistinctpillarsofplanning:

(1)electricitydemandprojectionsforeverycontinentalAfricancountryupto2040

(2)long-termcapacityexpansionplanningscenariosforpowergenerationandcross-bordertransmissioninfrastructureupto2040tomeettheprojecteddemand

(3)networkstudiestoconfirmthetechnicalfeasibilityofthecross-borderinterconnectorsselectedinthecapacityexpansionoptimisationscenarios.

ThedemandassessmentanalysisperformedusingEViewsdefinedthefutureelectricitydemandprojectionsinvariousscenarios.Theseincludedabaselinetrajectoryasreferencecase(AUDA-NEPAD,2023d)andthreealternativescenarios(AUDA-NEPAD,2023e)reflectinglow,mediumandhighaspirationaltargetsonvariousdevelopmentaspects,suchaselectricityaccessratesandper-capitaincomegrowth.

ThepowersystemcapacityexpansionanalysisperformedusingtheSPLAT-MESSAGEframeworkidentifiedcost-optimalprospectsfornewgenerationcapacity,cross-borderinterconnectionandstorageassetsupto2040undervariousscenarios(AUDA-NEPAD,2023a,2023b).Asacapacityexpansionmodel,theSPLAT-CMPmodelmainlyassessedthecostimplicationsassociatedwiththebuildoutofthescenariocapacitieswithoutdeepdivingintotheengineeringaspectsofgridoperation.Nevertheless,certainimportantoperationalandengineeringaspectswereaccountedforinasimplifiedway,i.e.theplanningreserveconstraint(Section2.2.1),theupperboundoninstantpenetrationofvariablerenewables(Section2.2.2),andothers.

ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA|9

Box1AnalysesandtoolsinvolvedinthefirstCMPexercise(continued)

ThenetworkanalysisperformedusingthePSS®EtoolaimedtorefineandvalidatetheSPLAT-CMPresults.Itcarriedoutanengineeringanalysiscoveringsteady-statesystemstudiestoassesspotentialgridreliabilitygaps,suchasthevariouscriticalcontingenciesinvolvinglossofmajorgeneratorsortransmissionlinesacrossdifferentpartsofthecontinentalgridsystem(AUDA-NEPAD,2023f).Advancedstudies,suchastransientandfrequencystabilitystudies,wereoutsidethescopeoftheanalysis.

Inadditiontotheabovethreeanalyses,theCMPexercisealsodevelopedamethodologyforcost–benefit-basedrankingofthecandidategenerationandinterconnectionprojectsofkeyrelevanceinthemediumterm,being2023-2032(AUDA-NEPAD,2023g).Thisanalysiswasusedtoevaluatetheinternalrateofreturn(IRR),netpresentvalue(NPV),andotherfinancialmetrics/indicatorsoftheprojects.ThisanalysisdifferedfromtheSPLAT-CMPanalysisinthesensethatitevaluatedthepriorityoftheprojectsfromaninvestor’sperspectiveinsteadofthesystemvalueperspective.Thecost–benefitstudyaimedtoinformthenextstepsintheCMPprocess,whichwouldfocusonamulti-criteriarankingoftheprojectsfortheirfurtherintegrationintothevariousinfrastructurefacilitationmechanismsinprogressinAfrica.

Box2ToolselectionconsiderationsoftheCMPstakeholders(AUDA-NEPAD,2023c)

WhileselectingthevariousmodelstocarryouttheCMPexercise,theCMPstakeholderspaidparticularattentiontomaintaininguniformitywiththetoolsandmodelsalreadyutilisedand/orselectedforupdatingtheindividualpowerpoolmasterplans.Thedetailedcriteriaincludedthefollowingconsiderations:

i.Functionality:Isthemodelfitforpurposeforthejobtobeundertakenandcanthemodelhandleallthemajorissuesthatneedtobemodelled?

ii.Costoflicences:Isthecostofpotentiallicencesprohibitive,giventheneedfortrainingforagivennumberofpersonnelandtheneedforthemaintenanceofdatabases?

iii.Transparencyofthemodel:Isthemodellingmethodologysufficientlydocumented?Canitbeusedtounderstandtheexpectedoutcomesofthemodel?

iv.Reliabilityofthemodel:Canthemodelbeusedtoconfirm/validateknownoutcomesfrompastmodellingapproaches?Canitrunproperlywithoutnon-convergenceissues,andwouldtheresultsremaininsensitivetodifferentmodelversions?

v.User-friendlinessofthemodel:

–Candataeasilybeenteredinthemodel,includingbulkchanges,andcantheresultsbemadeavailableinanaccessibleformatthatcanbedirectlyusedinreportsorpresentations?

–Doesthemodelhavearobuststandardsetofplotsandtablestoallowtheresultstobereviewedinanaccessiblemanner?

–Doesthemodelproducereportsthatcanbeeasilycustomisedforvariousapplications?

–Doesthemodelhavea(graphical)interface?

10|ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA

1.THESPLAT-CMPMODELFOR

THEAFRICANCONTINENTAL

POWERSYSTEMSMASTERPLAN

TheSPLATmodelsarecountry-specificgenerationcapacityexpansionmodelscoveringtheentireAfricancontinentandareroutinelyusedbyIRENAfornationalandregionalcapacity-buildingprogrammesinAfrica

(IRENA,n.d.a),andthePlanningandProspectsforRenewablePowerinAfricaanalyses(IRENA,n.d.b).TheSPLATmodelswerecreatedutilisingamodelgeneratorcalledtheModelforEnergySupplyStrategyAlternativesandtheirGeneralEnvironmentalImpact(MESSAGE).MESSAGEisaversatile,adaptable,bottom-up,multi-yearenergysystemmodelthatutiliseslinearandmixed-integeroptimisationtechniques.ItwasfirstestablishedbytheInternationalInstituteofAppliedSystemAnalysis(IIASA),buthasbeensubsequentlyimprovedbytheInternationalAtomicEnergyAgency(IAEA).

Formodellingpowersystems,theMESSAGEsoftwareneedsaprojectionofdemand,adatabaseofcurrentcapitalassetsforpowergenerationandtransmission,technicalandeconomicspecificationsofpowersupplytechnologies,andalist(alongwithtechnicalandeconomicspecifications)offutureinvestmentoptionsforpowergenerationandtransmissionforthemodeltoinvestin.MESSAGEaimstominimisethenetpresentvalue(subjecttoauser-definedoveralldiscountrate)oftotalsystemcostsincurredtomeetauser-definedlevelofdemandoveragivenplanninghorizonandunderaspecificsetofassumptions.AMESSAGEuserguidecourtesyoftheIAEAispubliclyavailable(IAEA,2016).MESSAGEisafree-of-costtoolforIAEAmemberstatesandsupportsworkingwithfreeprogrammingsolvers.

Startingfromthepowerinfrastructureinachosenbaseyearinagivenregion,aMESSAGE-basedmodelcomputesaprogressionofpossibletechnologycombinationsperperiod(user-defined;typicallyyearly)thatcanachievethelowest-costobjectiveacrosstheplanningphasetomeetuser-defineddemandandconstraints.Theconstraintscanrepresenttechnicalconstraintslinkedtopowersystemoperation,butmayalsopolicyassumptionsthatreflectscenariostorylines.Whilethemodelcantechnicallyrunatfullhourlyresolution,itistypicallyrunusingtimeslice-basedapproachestoavoidunrealisticcomputationalrequirements(seeSection3formoredetails).Thesetimeslicesusuallyrepresent“common”dailyandseasonalvariabilitiesinpowergenerationanddemand.

Themodelproducesthelowesttotaldiscountedcost3ofthesystem,whichincludesinvestment,operationandmaintenance,fuel,andanyothercostsdefinedbytheuser(e.g.penaltiesongreenhousegasemissions;costsofunmetdemand).Additionally,itensuresthatallsystemrequirementsaremet,suchassufficientresourcesandcapacitytoachievedesiredproductionlevels,meetingauser-definedreservemargin,orstayingwithinuser-definedtechnologydeploymentlimits,aswellasanypolicyobjectivesthattheusermaydefine(e.g.renewableenergytargets,CO2emissionlimits,speedoftechnologyrollout).

3Discountingisaprocessofconvertingacostvalueprojectedtoincurinthefutureintoanequivalentcurrentvalue.IntheCMPmodel,thebaseyearof2019reflectsthe“current”,andthevariouscostsanticipatedtoincurindifferentyearsacrossthestudyperiodarebroughtto2019equivalentsassumingafixeddiscountratedescribedinSection2.3.4

ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA|11

TheSPLAT-CMPmodelwasdesignedinaversatileandflexiblewaytocontrolmodelinputsandoutputs,andallowconfigurationofrunswithanycombinationofAfricancountries.Theultimategoalwastorunscenariosatthecontinentallevelandexaminesuggestedinvestmentstrategiesinnewgenerationandcross-bordertransmissionprojectsundervariousscenarios.ThemodelwasestablishedbymergingpreviousversionsoftheSPLATmodelforindividualAfricanpowerpools,documentedinIRENA’sreportseriesonplanningandprospectsforrenewablepowerinAfrica:SPLAT-WfortheWestAfricanPowerPool(IRENA,2018),SPLAT-ACECfortheAfricanCleanEnergyCorridor,consistingoftheEasternandSouthernAfricanpowerpools

(IRENA,2021a),SPLAT-CfortheCentralAfricanPowerPool(IRENA,2021b),andSPLAT-NforNorthAfricaincludingCOMELECcountries(IRENA,2023b).

TheSPLAT-CMPmodelincludesanumberofupdatesascomparedtopreviousSPLATmodels,andsomestate-of-the-artmodellingfeaturesthatmaybenefittheenergymodellingcommunity.

12|ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA

2.ELEMENTSOFSPLAT-CMPMODELDESIGN

2.1POWERSYSTEMDESCRIPTION

InthespiritofpreviousSPLATmodels,theSPLAT-CMPmodelinitssimplestformcanberepresentedasfollows.Eachcountryisrepresentedasasinglenodecontainingdifferentenergy“levels”,whichrepresentenergyattheresourcelevel(primary),energyconvertedintoelectricitybypowerplants(secondary),electricityatthetransmissionlevel(tertiary),andelectricityatthedistributionlevel(final).Theseenergylevels,alongwithvariousothermodelelements(seebelow),areschematicallyshowninFigure1.

Theprimarylevelrepresentstheavailabilityofresources(measuredintermsofprimaryenergysupply)ateachcountrynodelevel.Theavailabilityoftheseresourcesisdeterminedbothbydomesticresourcesaswellasacountry’scapacityforimports,i.e.byexogenousconstraints.Fuelpricesareexogenouslysetatthislevel.IntheSPLATmodels,asadefault,fuelpricesaredifferentiatedbyfueltypeandbylocalproductionversusimports,butnotdifferentiatedonacountrybasis(i.e.country-levelsubsidiesorotherpricedistortionsarenotreflectedinthemodel).

Thesecondarylevelisthemostimportantinthemodel,asitcontainsallthepowergenerationassetswithinacountrythatconvertaresource(primarylevel)intoelectricityreadytofeedintothetransmissiongrid(tertiarylevel).Itnotonlycontainsexistingpowergenerationassets,butalsocommittedassets(specificplantsthatarenotonlineyet,butwhichareconsideredascomingonlineinthefuturewithcompletecertaintyinaknownyear;thedefinitionofcommittedaccordingtotheCMPplanningprocessisaplantthathasreachedfinancialclose)aswellasallcandidatetechnologies,amongwhichthemodelcanchooseaselectiontocoverthefuturesupply–demandgap.Inadditiontouser-definedcandidatecapacity,SPLAT-CMPmodelentailspre-loadedgenericcandidatesupplyoptionsformostgenerationtechnologiestoallowtheusertodesigntheexpansionoptimisationaccordingtospecificscenariodefinitions.

Foralltechnologiesthatareduetocomeonlineinthefuture,aconstructiontime(numberofyears)isassumed,andtheoptimisationthusaccountsfortheconstructionstartingbeforetheyearofdeployment.Theinterestexpenseduringconstructioniscomputedbythemodelassumingthattheovernightcapitalexpenseisdistributedequallyduringtheconstructionperiod(includingtheyearinwhichthetechnologycomesonline).Theinterestexpensetogetherwiththeovernightcapitalexpenseofthetechnologyiseventuallyannualisedandtheresultingannualisedcostsincurringeachyearduringtheprojectlifeperiodarebroughttoacommonbaseyearbydiscounting(seeSection2.3.4formoredetailsondiscountrateparameter)forthepurposeofmakingoptimizationdecisions.Theconstructiontimesdifferbytechnology,representingthecomplexityoftheengineeringinvolvedindifferenttypesofpowerplants.Wenotethatonlyengineeringconstructiontimeswereconsidered,whereasinreality,planningandregulatoryapprovalstendtotake(substantially)moretime,especiallyfornuclearpowerplantsandlargehydropowerplants.

ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA|13

Figure1SchematicoverviewoftheRES(ReferenceEnergySystem)ofeachcountrynodein

theSPLAT-CMPmodel

Secondary

User-definedexisting,committedandcandidatesandpre-loadedgenericcandidates

Gas-firedplantsOCGT/CCGT**

Coal-firedplants**

HFO-firedplants*

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论