陕西省西安市(师大附中)2022年数学九上期末监测模拟试题含解析_第1页
陕西省西安市(师大附中)2022年数学九上期末监测模拟试题含解析_第2页
陕西省西安市(师大附中)2022年数学九上期末监测模拟试题含解析_第3页
陕西省西安市(师大附中)2022年数学九上期末监测模拟试题含解析_第4页
陕西省西安市(师大附中)2022年数学九上期末监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,、、、是上的四点,,,则的度数是()A. B. C. D.2.将两个圆形纸片(半径都为1)如图重叠水平放置,向该区域随机投掷骰子,则骰子落在重叠区域(阴影部分)的概率大约为()A. B. C. D.3.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为(

)A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,4) C.(2,﹣1) D.(8,﹣4)4.如图,二次函数y=ax1+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,1)与(0,3)之间(不包括这两点),对称轴为直线x=1.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y1)是函数图象上的两点,则y1<y1;④﹣<a<﹣.其中正确结论有()A.1个 B.1个 C.3个 D.4个5.如图,,相交于点,.若,,则与的面积之比为()A. B. C. D.6.已知关于的方程,若,则该方程一定有一个根为()A.-1 B.0 C.1 D.1或-17.在平面直角坐标系中,点关于原点对称的点的坐标是()A. B. C. D.8.将抛物线向左平移个单位长度,再向.上平移个单位长度得到的抛物线的解析式为()A. B.C. D.9.已知⊙O的半径为1,点P到圆心的距离为d,若关于x的方程x-2x+d=0有实数根,则点P()A.在⊙O的内部 B.在⊙O的外部 C.在⊙O上 D.在⊙O上或⊙O内部10.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A. B. C. D.11.如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则AE:EC为()A.2:1 B.2:3 C.4:9 D.5:412.如图,二次函数的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>4二、填空题(每题4分,共24分)13.在Rt△ABC中,∠C=90°,如果AB=6,,那么AC=_____.14.如图,摆放矩形与矩形,使在一条直线上,在边上,连接,若为的中点,连接,那么与之间的数量关系是__________.15.将一元二次方程用配方法化成的形式为________________.16.已知:如图,△ABC的面积为16,点D、E分别是边AB、AC的中点,则△ADE的面积为______.17.如图,矩形纸片ABCD中,AD=5,AB=1.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.18.计算的结果是_____________.三、解答题(共78分)19.(8分)如图,正方形ABCD,△ABE是等边三角形,M是正方形ABCD对角线AC(不含点A)上任意一点,将线段AM绕点A逆时针旋转60°得到AN,连接EN、DM.求证:EN=DM.20.(8分)如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?21.(8分)今年下半年以来,猪肉价格不断上涨,主要是由非洲猪瘟疫情导致.非洲猪瘟疫情发病急,蔓延速度快.某养猪场第一天发现3头生猪发病,两天后发现共有192头生猪发病.(1)求每头发病生猪平均每天传染多少头生猪?(2)若疫情得不到有效控制,按照这样的传染速度,3天后生猪发病头数会超过1500头吗?22.(10分)如图,△ABC的边BC在x轴上,且∠ACB=90°.反比例函数y=(x>0)的图象经过AB边的中点D,且与AC边相交于点E,连接CD.已知BC=2OB,△BCD的面积为1.(1)求k的值;(2)若AE=BC,求点A的坐标.23.(10分)某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第天的成本(元/件)与(天)之间的关系如图所示,并连续50天均以80元/件的价格出售,第天该产品的销售量(件)与(天)满足关系式.(1)第40天,该商家获得的利润是______元;(2)设第天该商家出售该产品的利润为元.①求与之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在出售该产品的过程中,当天利润不低于1000元的共有多少天?24.(10分)已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:△BAP≌△CAQ.(2)若PA=3,PB=4,∠APB=150°,求PC的长度.25.(12分)如图,已知圆锥的底面半径是2,母线长是6.(1)求这个圆锥的高和其侧面展开图中∠ABC的度数;(2)如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,求这根绳子的最短长度.26.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据垂径定理得,结合和圆周角定理,即可得到答案.【详解】∵,∴,∵,∴.故选:A.【点睛】本题主要考查垂径定理和圆周角定理,掌握垂径定理和圆周角定理是解题的关键.2、B【解析】连接AO1,AO2,O1O2,BO1,推出△AO1O2是等边三角形,求得∠AO1B=120°,得到阴影部分的面积=-,得到空白部分的面积=+,于是得到结论.【详解】解:连接AO1,AO2,O1O2,BO1,则O1O2垂直平分AB

∴AO1=AO2=O1O2=BO1=1,

∴△AO1O2是等边三角形,

∴∠AO1O2=60°,AB=2AO1sin60°=

∴∠AO1B=120°,∴阴影部分的面积=2×()=-,

∴空白部分和阴影部分的面积和=2π-(-)=+,

∴骰子落在重叠区域(阴影部分)的概率大约为≈,

故选B.【点睛】此题考查了几何概率,扇形的面积,三角形的面积,正确的作出辅助线是解题的关键.3、A【分析】利用位似比为1:2,可求得点E的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【详解】∵E(-4,2),位似比为1:2,∴点E的对应点E′的坐标为(2,-1)或(-2,1).故选A.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.4、D【分析】根据二次函数的图象与系数的关系即可求出答案.【详解】①由开口可知:a<0,∴对称轴x=−>0,∴b>0,由抛物线与y轴的交点可知:c>0,∴abc<0,故①正确;②∵抛物线与x轴交于点A(-1,0),对称轴为x=1,∴抛物线与x轴的另外一个交点为(5,0),∴x=3时,y>0,∴9a+3b+c>0,故②正确;③由于<1<,且(,y1)关于直线x=1的对称点的坐标为(,y1),∵<,∴y1<y1,故③正确,④∵−=1,∴b=-4a,∵x=-1,y=0,∴a-b+c=0,∴c=-5a,∵1<c<3,∴1<-5a<3,∴-<a<-,故④正确故选D.【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型.5、B【分析】先证明两三角形相似,再利用面积比是相似比的平方即可解出.【详解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∵AB=1,CD=2,∴△AOB和△DCO相似比为:1:2.∴△AOB和△DCO面积比为:1:4.故选B.【点睛】本题考查相似三角形的面积比,关键在于牢记面积比和相似比的关系.6、C【分析】由题意将变形为并代入原方程左边,再将方程左边因式分解即可.【详解】解:依题意得,原方程化为,即,∴,∴为原方程的一个根.故选:C.【点睛】本题考查一元二次方程解的定义.注意掌握方程的解是使方程左右两边成立的未知数的值.7、B【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y),可以直接写出答案.【详解】点P(-3,4)关于原点对称的点的坐标是(3,-4).故选:B.【点睛】本题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时坐标变化特点:横纵坐标均互为相反数.8、B【分析】原抛物线的顶点坐标(0,0),再把点(0,0)向左平移4个单位长度得点(0,-4),再向上平移1个单位长度得到点(-4,1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线先向左平移个单位长度,得到的抛物线解析式为,再向上平移个单位长度得到的抛物线解析式为,故选:.【点睛】本题考查的是抛物线平移,根据抛物线平移规律“左移加右移减,上移加下移减”写出平移后的抛物线解析式.需要注意左平移是加,右平移是减.9、D【分析】先根据条件x

2

-2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x

2

-2x+d=0有实根,∴根的判别式△=(-2)

2

-4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r时,点在圆内.10、B【分析】根据定义进行判断【详解】解:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选B.【点睛】本题考查简单组合体的三视图.11、A【解析】试题解析:∵ED∥BC,故选A.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.12、B【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<1.故选B.二、填空题(每题4分,共24分)13、2【解析】如图所示,在Rt△ABC中,∠C=90°,AB=6,cosA=,∴cosA=,则AC=AB=×6=2,故答案为2.14、【分析】只要证明△FHE≌△AHM,推出HM=HE,在直角△MDE中利用斜边中线的性质,则DH=MH=HE,即可得到结论成立.【详解】解:如图,延长EH交AD于点M,∵四边形ABCD和ECGF是矩形,∴AD∥EF,∴∠EFH=∠HAM,∵点H是AF的中点,∴AH=FH,∵∠AHM=∠FHE,∴△FHE≌△AHM,∴HM=HE,∴点H是ME的中点,∵△MDE是直角三角形,∴DH=MH=HE;故答案为:.【点睛】本题考查矩形的性质、全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.15、【分析】把方程常数项移到右边,两边加上1,变形得到结果,即可得到答案.【详解】解:由方程,变形得:,配方得:,即;故答案为.【点睛】此题考查了解一元二次方程——配方法,熟练掌握完全平方公式是解本题的关键.16、4【分析】根据三角形中位线的性质可得DE//BC,,即可证明△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方即可得答案.【详解】∵点D、E分别是边AB、AC的中点,∴DE为△ABC的中位线,∴DE//BC,,∴△ADE∽△ABC,∴=,∵△ABC的面积为16,∴S△ADE=×16=4.故答案为:4【点睛】本题考查三角形中位线的性质及相似三角形的判定与性质,三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握相似三角形的面积比等于相似比的平方是解题关键.17、5.【分析】根据四边形ABCD为矩形以及折叠的性质得到∠A=∠MNB=90°,由M为射线AD上的一个动点可知若△NBC是直角三角形,∠NBC=90°与∠NCB=90°都不符合题意,只有∠BNC=90°.然后分

N在矩形ABCD内部与

N在矩形ABCD外部两种情况进行讨论,利用勾股定理求得结论即可.【详解】∵四边形ABCD为矩形,∴∠BAD=90°,∵将△ABM沿BM折叠得到△NBM,∴∠MAB=∠MNB=90°.∵M为射线AD上的一个动点,△NBC是直角三角形,∴∠NBC=90°与∠NCB=90°都不符合题意,∴只有∠BNC=90°.①当∠BNC=90°,N在矩形ABCD内部,如图3.∵∠BNC=∠MNB=90°,∴M、N、C三点共线,∵AB=BN=3,BC=5,∠BNC=90°,∴NC=4.设AM=MN=x,∵MD=5﹣x,MC=4+x,∴在Rt△MDC中,CD5+MD5=MC5,35+(5﹣x)5=(4+x)5,解得x=3;当∠BNC=90°,N在矩形ABCD外部时,如图5.∵∠BNC=∠MNB=90°,∴M、C、N三点共线,∵AB=BN=3,BC=5,∠BNC=90°,∴NC=4,设AM=MN=y,∵MD=y﹣5,MC=y﹣4,∴在Rt△MDC中,CD5+MD5=MC5,35+(y﹣5)5=(y﹣4)5,解得y=9,则所有符合条件的M点所对应的AM和为3+9=5.故答案为5.【点睛】本题考查了翻折变换(折叠问题),矩形的性质以及勾股定理,难度适中.利用数形结合与分类讨论的数学思想是解题的关键.18、1【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可.【详解】解:原式=2-2=1.故答案为1.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.三、解答题(共78分)19、证明见解析【分析】利用等边三角形的性质以及旋转的性质,即可判定△EAN≌△DAM(SAS),依据全等三角形的对应边相等,即可得到EN=DM.【详解】证明:∵△ABE是等边三角形,∴∠BAE=60°,BA=EA,由旋转可得,∠MAN=60°,AM=AN,∴∠BAE=∠MAN,∴∠EAN=∠BAM,∵四边形ABCD是正方形,∴BA=DA,∠BAM=∠DAM=45°,∴EA=DA,∠EAN=∠DAM,在△EAN和△DAM中,EA=DA.∠EAN=∠DAM,AN=AM,∴△EAN≌△DAM(SAS),∴EN=DM.【点睛】本题主要考查了旋转的性质以及全等三角形的判定与性质,解决本题的关键是要熟练掌握旋转图形的性质和全等三角形的判定和性质.20、1米/秒【解析】分析:过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,根据直角三角形的性质用x表示出AC与BC的长,再根据小明与小军同时到达山顶C处即可得出结论.本题解析:解:过点C作CD⊥AB于点D.设AD=x米,小明的行走速度是a米/秒.∵∠A=45°,CD⊥AB,∴AD=CD=x米,∴AC=x(米).在Rt△BCD中,∵∠B=30°,∴BC==2x(米).∵小军的行走速度为米/秒,若小明与小军同时到达山顶C处,∴=,解得a=1.答:小明的行走速度是1米/秒.21、(1)7头;(2)会超过1500头【分析】(1)设每头发病生猪平均每天传染x头生猪,根据“第一天发现3头生猪发病,两天后发现共有192头生猪发病”,即可得出关于x的一元二次方程,解之取其正值即可得出结论;

(2)根据3天后生猪发病头数=2天后生猪发病头数×(1+7),即可求出3天后生猪发病头数,再将其与1500进行比较即可得出结论.【详解】解:(1)设每头发病生猪平均每天传染头生猪,依题意,得,解得:,(不合题意,舍去).答:每头发病生猪平均每天传染7头生猪.(2)(头,.答:若疫情得不到有效控制,3天后生猪发病头数会超过1500头.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22、(1)k=12;(2)A(1,1).【解析】(1)连接OD,过D作DF⊥OC于F,依据∠ACB=90°,D为AB的中点,即可得到CD=AB=BD,进而得出BC=2BF=2CF,依据BC=2OB,即可得到OB=BF=CF,进而得出k=xy=OF•DF=BC•DF=2S△BCD=12;(2)设OB=m,则OF=2m,OC=3m,DF=,进而得到E(3m,-2m),依据3m(-2m)=12,即可得到m=2,进而得到A(1,1).【详解】解:(1)如图,连接OD,过D作DF⊥OC于F,∵∠ACB=90°,D为AB的中点,∴CD=AB=BD,∴BC=2BF=2CF,∵BC=2OB,∴OB=BF=CF,∴k=xy=OF•DF=BC•DF=2S△BCD=12;(2)设OB=m,则OF=2m,OC=3m,DF=,∵DF是△ABC的中位线,∴AC=2DF=,又∵AE=BC=2m,∴CE=AC-AE=-2m,∴E(3m,-2m),∵3m(-2m)=12,∴m2=4,又∵m>0,∴m=2,∴OC=1,AC=1,∴A(1,1).【点睛】本题考查了反比例函数图象上点的坐标特征,解题时注意:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.23、(1)1000(2)①,25,1225;②1.【分析】(1)根据图象可求出BC的解析式,即可求出第40天时的成本为60元,此时的产量为z=40+10=50,则可求得第40天的利润;(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)根据图象得,B(20,40),C(50,70),设BC的解析式为y=kx+b,把B(20,40),C(50,70)代入得,,解得,,所以,直线BC的解析式为:y=x+20,当x=40时,y=60,即第40天时该产品的成本是60元/件,利润为:80-60=20(元/件)此时的产量为z=40+10=50件,则第40天的利润为:20×50=1000元故答案为:1000(2)①当时,,∴时,元;当时,,∴时,元;综上所述,当时,元②当时,若元,则(天),第15天至第20天的利润都不低于1000元;当时,若元,则(舍去)(天),所以第21天至第40天的利润都不低于1000元,则总共有1天的利润不低于1000元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.24、(1)见解析;(2)1【分析】(1)直接利用旋转的性质结合全等三角形的判定与性质得出答案;

(2)直接利用等边三角形的性质结合勾股定理即可得出答案.【详解】(1)证明:∵线段AP绕点A逆时针旋转60°到AQ,∴AP=AQ,∠PAQ=60°,∴△APQ是等边三角形,∠PAC+∠CAQ=60°,∵△ABC是等边三角形,∴∠BAP+∠PAC=60°,AB=AC,∴∠BAP=∠CAQ,在△BAP和△CAQ中,,∴△BAP≌△CAQ(SAS);(2)∵由(1)得△APQ是等边三角形,∴AP=PQ=3,∠AQP=60°,∵∠APB=110°,∴∠PQC=110°﹣60°=90°,∵PB=QC,∴QC=4,∴△PQC是直角三角形,∴PC===1.【点睛】此题主要考查了旋转的性质以及全等三角形的判定与性质和勾股定理等知识,正确应用等边三角形的性质是解题关键.25、(1)∠ABC=120°;(2)这根绳子的最短长度是.【分析】(1)根据勾股定理直接求出圆锥的高,再利用圆锥侧面展开图弧长与其底面周长的长度关系,求出侧面展开图中∠ABC的度数即可;(2)首先求出BD的长,再利用勾股定理求出AD以及AC的长即可.【详解】(1)圆锥的高=底面圆的周长等于:2π×2=,解得:n=120°;

(2)连结AC,过B作BD⊥AC于D,则∠ABD=60°.由AB=6,可求得BD=3,∴AD═,AC=2AD=,即这根绳子的最短长度是.【点睛】此题主要考查了圆锥的计算、勾股定理、平面展开-最短路径问题.得到圆锥的底面圆的周长和扇形弧长相等是解决本题的突破点.26、(1)y=﹣x2﹣2x+3(2)(﹣,)(3)存在,P(﹣2,3)或P(,)【分析】(1)用待定系数法求解;(2)过点P作PH⊥x轴于点H,交AB于点F,直线AB解析式为y=x+3,设P(t,﹣t2﹣2t+3)(﹣3<t<0),则F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论