版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨市尚志市2025届数学九上期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为()A.1cm B.7cm C.3cm或4cm D.1cm或7cm2.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B. C. D.43.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=484.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C.5 D.65.如图,在四边形中,,点分别是边上的点,与交于点,,则与的面积之比为()A. B. C.2 D.46.已知点在线段上(点与点、不重合),过点、的圆记作为圆,过点、的圆记作为圆,过点、的圆记作为圆,则下列说法中正确的是()A.圆可以经过点 B.点可以在圆的内部C.点可以在圆的内部 D.点可以在圆的内部7.如图,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于点G,连接AF,给出下列结论:①AE⊥BF;②AE=BF;③BG=GE;④S四边形CEGF=S△ABG,其中正确的个数为()A.1个 B.2个 C.3个 D.4个8.如图,一个半径为r(r<1)的圆形纸片在边长为6的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分的面积是()A.πr2 B.C. D.9.已知,则下列各式中不正确的是()A. B. C. D.10.在ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径画圆,则点C与⊙A的位置关系是()A.在⊙A外 B.在⊙A上 C.在⊙A内 D.不能确定11.若关于x的方程(m﹣1)x2+mx﹣1=0是一元二次方程,则m的取值范围是()A.m≠1 B.m=1 C.m≥1 D.m≠012.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_______米(结果保留根号).14.分解因式:x2﹣2x=_____.15.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交⊙O于点D,若∠C=50°,则∠AOD=_____________16.若关于的分式方程有增根,则的值为__________.17.如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.18.某化肥厂一月份生产化肥500吨,从二月份起,由于改进操作技术,使得第一季度共生产化肥1750吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可列方程为_______.三、解答题(共78分)19.(8分)已知四边形为的内接四边形,直径与对角线相交于点,作于,与过点的直线相交于点,.(1)求证:为的切线;(2)若平分,求证:;(3)在(2)的条件下,为的中点,连接,若,的半径为,求的长.20.(8分)某百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件.(1)若想要这种童装销售利润每天达到1200元,同时又能让顾客得到更多的实惠,每件童装应降价多少元?(2)当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?21.(8分)如图所示,在平面直角坐标系中,抛物线与轴相交于点,点,与轴相交于点,与抛物线的对称轴相交于点.(1)求该抛物线的表达式,并直接写出点的坐标;(2)过点作交抛物线于点,求点的坐标;(3)在(2)的条件下,点在射线上,若与相似,求点的坐标.22.(10分)在平面直角坐标系中,直线y=x与反比例函数的图象交于点A(2,m).(1)求m和k的值;(2)点P(xP,yP)是函数图象上的任意一点,过点P作平行于x轴的直线,交直线y=x于点B.①当yP=4时,求线段BP的长;②当BP3时,结合函数图象,直接写出点P的纵坐标yP的取值范围.23.(10分)综合与实践在数学活动课上,老师出示了这样一个问题:如图1,在中,,,,点为边上的任意一点.将沿过点的直线折叠,使点落在斜边上的点处.问是否存在是直角三角形?若不存在,请说明理由;若存在,求出此时的长度.探究展示:勤奋小组很快找到了点、的位置.如图2,作的角平分线交于点,此时沿所在的直线折叠,点恰好在上,且,所以是直角三角形.问题解决:(1)按勤奋小组的这种折叠方式,的长度为.(2)创新小组看完勤奋小组的折叠方法后,发现还有另一种折叠方法,请在图3中画出来.(3)在(2)的条件下,求出的长.24.(10分)有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1.它们除了数字外没有任何区别,(1)随机从A组抽取一张,求抽到数字为2的概率;(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?25.(12分)某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨;(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?26.为了提高教学质量,促进学生全面发展,某中学计划投入99000元购进一批多媒体设备和电脑显示屏,且准备购进电脑显示屏的数量是多媒体设备数量的6倍.现从商家了解到,一套多媒体设备和一个电脑显示屏的售价分别为3000元和600元.(1)求最多能购进多媒体设备多少套?(2)恰逢“双十一”活动,每套多媒体设备的售价下降,每个电脑显示屏的售价下降元,学校决定多媒体设备和电脑显示屏的数量在(1)中购进最多量的基础上都增加,实际投入资金与计划投入资金相同,求的值.
参考答案一、选择题(每题4分,共48分)1、D【分析】分AB、CD在圆心的同侧和异侧两种情况求得AB与CD的距离.构造直角三角形利用勾股定理求出即可.【详解】当弦AB和CD在圆心同侧时,如图①,过点O作OF⊥CD,垂足为F,交AB于点E,连接OA,OC,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AE=4cm,CF=3cm,∵OA=OC=5cm,∴EO=3cm,OF=4cm,∴EF=OF-OE=1cm;当弦AB和CD在圆心异侧时,如图②,过点O作OE⊥AB于点E,反向延长OE交AD于点F,连接OA,OC,∵AB∥CD,∴OF⊥CD,∵AB=8cm,CD=6cm,∴AE=4cm,CF=3cm,∵OA=OC=5cm,∴EO=3cm,OF=4cm,∴EF=OF+OE=7cm.故选D.【点睛】本题考查了垂径定理、勾股定理;熟练掌握垂径定理和勾股定理,根据题意画出图形是解题的关键,要注意有两种情况.2、C【分析】根据勾股定理求得,然后根据矩形的性质得出.【详解】解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴,∴,故选:C.【点睛】本题考查的是矩形的性质,两点间的距离公式,掌握矩形的对角线的性质是解题的关键.3、D【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设教育经费的年平均增长率为x,然后根据已知条件可得出方程.【详解】∵某超市一月份的营业额为36万元,每月的平均增长率为x,∴二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2.∴根据三月份的营业额为48万元,可列方程为36(1+x)2=48.故选D.【点睛】本题考查了一元二次方程的应用,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.4、C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.5、D【分析】由AD∥BC,可得出△AOE∽△FOB,再利用相似三角形的性质即可得出△AOE与△BOF的面积之比.【详解】:∵AD∥BC,
∴∠OAE=∠OFB,∠OEA=∠OBF,
∴,∴所以相似比为,∴.故选:D.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.6、B【分析】根据已知条件确定各点与各圆的位置关系,对各个选项进行判断即可.【详解】∵点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为∴点C可以在圆的内部,故A错误,B正确;∵过点B、C的圆记作为圆∴点A可以在圆的外部,故C错误;∴点B可以在圆的外部,故D错误.故答案为B.【点睛】本题考查了点与圆的位置关系,根据题意画出各点与各圆的位置关系进行判断即可.7、C【分析】根据正方形的性质证明△ABE≌△BCF,可证得①AE⊥BF;
②AE=BF正确;证明△BGE∽△ABE,可得==,故③不正确;由S△ABE=S△BFC可得S四边形CEGF=S△ABG,故④正确.【详解】解:在正方形ABCD中,AB=BC,∠ABE=∠C=90,
又∵BE=CF,
∴△ABE≌△BCF(SAS),
∴AE=BF,∠BAE=∠CBF,
∴∠FBC+∠BEG=∠BAE+∠BEG=90°,
∴∠BGE=90°,
∴AE⊥BF,故①,②正确;
∵CF=2FD,BE=CF,AB=CD,
∴=,
∵∠EBG+∠ABG=∠ABG+∠BAG=90°,
∴∠EBG=∠BAE,
∵∠EGB=∠ABE=90°,
∴△BGE∽△ABE,
∴==,即BG=GE,故③不正确,
∵△ABE≌△BCF,
∴S△ABE=S△BFC,
∴S△ABE−S△BEG=S△BFC−S△BEG,
∴S四边形CEGF=S△ABG,故④正确.
故选:C.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识点,解决问题的关键是熟练掌握正方形的性质.8、C【分析】当圆运动到正六边形的角上时,圆与两边的切点分别为E,F,连接OE,OB,OF,根据六边形的性质得出,所以,再由锐角三角函数的定义求出BF的长,最后利用可得出答案.【详解】如图,当圆运动到正六边形的角上时,圆与两边的切点分别为E,F,连接OE,OB,OF,∵多边形是正六边形,∴,,∴圆形纸片不能接触到的部分的面积是故选:C.【点睛】本题主要考查正六边形和圆,掌握正六边形的性质和特殊角的三角函数值是解题的关键.9、C【分析】依据比例的基本性质,将比例式化为等积式,即可得出结论.【详解】A.由可得,变形正确,不合题意;B.由可得,变形正确,不合题意;C.由可得,变形不正确,符合题意;D.由可得,变形正确,不合题意.故选C.【点睛】本题考查了比例的性质,此题比较简单,解题的关键是掌握比例的变形.10、B【分析】根据勾股定理求出AC的值,根据点与圆的位关系特点,判断即可.【详解】解:由勾股定理得:∵AC=半径=3,∴点C与⊙A的位置关系是:点C在⊙A上,故选:B.【点睛】本题考查了点与圆的位置关系定理和勾股定理等知识点的应用,点与圆(圆的半径是r,点到圆心的距离是d)的位置关系有3种:d=r时,点在圆上;d<r点在圆内;d>r点在圆外.掌握以上知识是解题的关键.11、A【分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】解:由题意得:m﹣1≠0,解得:m≠1,故选:A.【点睛】本题考查了一元二次方程的定义,注意掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.12、A【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,是中心对称图形,故此选项正确;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、不是轴对称图形,不是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误;
故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每题4分,共24分)13、一4【分析】分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB求CM,作差可求DC.【详解】因为∠MAD=45°,AM=4,所以MD=4,因为AB=8,所以MB=12,因为∠MBC=30°,所以CM=MBtan30°=4.所以CD=4-4.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键.14、x(x﹣2)【分析】提取公因式x,整理即可.【详解】解:x2﹣2x=x(x﹣2).故答案为:x(x﹣2).【点睛】本题考查了提公因式法分解因式,因式分解的第一步:有公因式的首先提取公因式.15、80°【详解】解:∵AC是⊙O的切线,∴AB⊥AC,∵∠C=50°,∴∠B=90°﹣∠C=40°,∵OA=OB,∴∠ODB=∠B=40°,∴∠AOD=80°.故答案为80°.16、3【分析】将分式方程去分母转化为整式方程,并求出x的值,然后再令x+2=0,即可求得m的值.【详解】解:由得:x=4-2m令x+2=0,得4-2m+2=0,解得m=3故答案为3.【点睛】本题考查了分式方程的增根,解分式方程和把增根代入整式方程求得相关字母的值是解答本题的关键.17、.【解析】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△PAB是等边三角形,∴∠PAH=60°.∴根据锐角三角函数,得AH=.∴OB=3+∴S△POB=OB•PH=.18、500+500(1+x)+500(1+x)2=1【解析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),根据二、三月份平均每月的增长为x,则二月份的产量是500(1+x)吨,三月份的产量是500(1+x)(1+x)=500(1+x)2,再根据第一季度共生产钢铁1吨列方程即可.【详解】依题意得二月份的产量是500(1+x),三月份的产量是500(1+x)(1+x)=500(1+x)2,∴500+500(1+x)+500(1+x)2=1.故答案为:500+500(1+x)+500(1+x)2=1.【点睛】本题考查了由实际问题抽象出一元二次方程,能够根据增长率分别表示出各月的产量,这里注意已知的是一季度的产量,即三个月的产量之和.三、解答题(共78分)19、(1)证明见解析(2)证明见解析(3)【分析】(1)根据直径所对的圆周角为90°,得到∠ADC=90°,根据直角三角形两锐角互余得到∠DAC+∠DCA=90°,再根据同弧或等弧所对的圆周角相等,可得到∠FAD+∠DAC=90°,即可得出结论;(2)连接OD.根据圆周角定理和角平分线定义可得∠DOA=∠DOC,即可得出结论;(3)连接OD交CF于M,作EP⊥AD于P.可求出AD=4,AF∥OM.根据三角形中位线定理得出OM=AF.证明△ODE≌△OCM,得到OE=OM.设OM=m,用m表示出OE,AE,AP,DP.通过证明△EAN∽△DPE,根据相似三角形对应边成比例,求出m的值,从而求得AN,AE的值.在Rt△NAE中,由勾股定理即可得出结论.【详解】(1)∵AC为⊙O的直径,∴∠ADC=90°,∴∠DAC+∠DCA=90°.∵,∴∠ABD=∠DCA.∵∠FAD=∠ABD,∴∠FAD=∠DCA,∴∠FAD+∠DAC=90°,∴CA⊥AF,∴AF为⊙O的切线.(2)连接OD.∵,∴∠ABD=∠AOD.∵,∴∠DBC=∠DOC.∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠DOA=∠DOC,∴DA=DC.(3)连接OD交CF于M,作EP⊥AD于P.∵AC为⊙O的直径,∴∠ADC=90°.∵DA=DC,∴DO⊥AC,∴∠FAC=∠DOC=90°,AD=DC==4,∴∠DAC=∠DCA=45°,AF∥OM.∵AO=OC,∴OM=AF.∵∠ODE+∠DEO=90°,∠OCM+∠DEO=90°,∴∠ODE=∠OCM.∵∠DOE=∠COM,OD=OC,∴△ODE≌△OCM,∴OE=OM.设OM=m,∴OE=m,,,∴.∵∠AED+∠AEN=135°,∠AED+∠ADE=135°,∴∠AEN=∠ADE.∵∠EAN=∠DPE,∴△EAN∽△DPE,∴,∴,∴,∴,,由勾股定理得:.【点睛】本题是圆的综合题.考查了圆周角定理,切线的判定,相似三角形的判定与性质,三角形的中位线定理等知识.用含m的代数式表示出相关线段的长是解答本题的关键.20、(1)每件童装应降价20元,(2)当x=15时,函数有最大值,即童装一天的销售利润最多为1250元.【分析】(1)表示出销售数量,找到等量关系即可解题,(2)求出二次函数的表达式,化成顶点式即可解题.【详解】解:(1)设降了x元,则日销售量增加2x件,依题意得:(40-x)(20+2x)=1200,化简整理得:(x-10)(x-20)=0,解得:x=10或x=20,∵让顾客得到更多的实惠,∴每件童装应降价20元,(2)设销售利润为y,y=(40-x)(20+2x),y=-2(x-15)2+1250,∴当x=15时,函数有最大值,即童装一天的销售利润最多为1250元.【点睛】本题考查了二次函数的实际应用,中等难度,建立等量关系是解题关键.21、(1),点;(2)点;(3)或【解析】(1)设抛物线的表达式为,将A、B、C三点坐标代入表达式,解出a、b、c的值即可得到抛物线表达式,同理采用待定系数法求出直线BC解析式,即可求出与对称轴的交点坐标;(2)过点E作EH⊥AB,垂足为H.先证∠EAH=∠ACO,则tan∠EAH=tan∠ACO=,设EH=t,则AH=2t,从而可得到E(-2+2t,t),最后,将点E的坐标代入抛物线的解析式求解即可;(3)先证明,再根据与相似分两种情况讨论,建立方程求出AF,利用三角函数即可求出F点的坐标.【详解】(1)设抛物线的表达式为.把,和代入得,解得,抛物线的表达式,∴抛物线对称轴为设直线BC解析式为,把和代入得,解得∴直线BC解析式为当时,点.(2)如图,过点E作EH⊥AB,垂足为H.∵∠EAB+∠BAC=90°,∠BAC+∠ACO=90°,∴∠EAH=∠ACO.∴tan∠EAH=tan∠ACO=.设EH=t,则AH=2t,∴点E的坐标为(−2+2t,t).将(−2+2t,t)代入抛物线的解析式得:12(−2+2t)2−(−2+2t)−4=t,解得:t=或t=0(舍去)∴(3)如图所示,,.,,.由(2)中tan∠EAH=tan∠ACO可知,.和相似,分两种情况讨论:①,即,,∵tan∠EAB=∴sin∠EAB=∴F点的纵坐标=点.②,即,,同①可得F点纵坐标=横坐标=点.综合①②,点或.【点睛】本题考查二次函数的综合问题,需要熟练掌握待定系数法求函数解析式,熟练运用三角函数与相似三角形的性质,作出图形,数形结合是解题的关键.22、(1)m=2,k=4;(2)①BP=3;②yP≥4或0<yP≤1【分析】(1)将A点坐标代入直线y=x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值;(2)①由题可知点P和点B的纵坐标都为4,将纵坐标分别代入两个函数解析式得相应横坐标,即可得到点的坐标,求出BP.②根据函数与不等式的关系,即可得到答案.【详解】(1)解:将A(2,m)代入直线y=x,得m=2,所以A(2,2),将A(2,2)代入反比例函数,得:,则k=4综上所述,m=2,k=4.(2)①解:作图:当yP=4时点P和点B的纵坐标都为4当将y=4,代入得x=1,即P点坐标(1,4)当将y=4,代入y=x得x=4,即B点坐标(4,4)∴BP=3②由图可知BP3时,纵坐标yP的范围:yP≥4或0<yP≤1【点睛】本题考查了一次函数、反比例函数参数的求法,以及函数与不等式的关系,掌握解题方法是解答此题的关键.23、(1)3;(2)见解析;(3)【分析】(1)由勾股定理可求AB的长,由折叠的性质可得AC=AE=6,CD=DE,∠C=∠BED=90°,由勾股定理可求解;
(2)如图所示,当DE∥AC,∠EDB=∠ACB=90°,即可得到答案;
(3)由折叠的性质可得CF=EF,CD=DE,∠C=∠FED=90°,∠CDF=∠EDF=45°,可得DE=CD=CF=EF,通过证明△DEB∽△CAB,可得,即可求解.【详解】(1)∵∠ACB=90°,AC=6,BC=8,
∴,
由折叠的性质可得:△ACD≌△AED,
∴AC=AE=6,CD=DE,∠C=∠BED=90°,
∴BE=10-6=4,
∵BD2=DE2+BE2,
∴(8-CD)2=CD2+16,
∴CD=3,
故答案为:3;
(2)如图3,当DE∥AC,△BDE是直角三角形,
(3)∵DE∥AC,
∴∠ACB=∠BDE=90°,
由折叠的性质可得:△CDF≌△EDF,
∴CF=EF,CD=DE,∠C=∠FED=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同更改补充协议指南
- 专业美发师聘用合同模板
- 商场水地暖施工合同
- 2024年度电梯采购与安装维护合同2篇
- 文化场馆机械施工合同样本
- 试用期工作合同范本
- 建筑工程高空吊篮租赁合同范本
- 户外拓展训练面包车租赁合同
- 航空航天设施钢结构施工劳务合同
- 2024年安徽省标准版劳动协议模板
- 国家经济安全课件
- 人工智能技术应用专业调研报告
- 33 《鱼我所欲也》对比阅读-2024-2025中考语文文言文阅读专项训练(含答案)
- 《中华民族共同体概论》考试复习题库(含答案)
- (完整版)电工基础学习PPT课件
- 色彩构成—明度九调作业要求
- 火灾自动报警系统操作规程全文
- 教育信息化十年发展规划
- 北京四中网校四重五步学习法
- 不锈钢栏杆施工方案
- 液压管道施工方案(完整版)
评论
0/150
提交评论