2022年鄂西北四校数学高三第一学期期末教学质量检测试题含解析_第1页
2022年鄂西北四校数学高三第一学期期末教学质量检测试题含解析_第2页
2022年鄂西北四校数学高三第一学期期末教学质量检测试题含解析_第3页
2022年鄂西北四校数学高三第一学期期末教学质量检测试题含解析_第4页
2022年鄂西北四校数学高三第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若为虚数单位,则复数的共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知平面向量满足,且,则所夹的锐角为()A. B. C. D.03.二项式展开式中,项的系数为()A. B. C. D.4.双曲线x2a2A.y=±2x B.y=±3x5.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.6.复数满足为虚数单位),则的虚部为()A. B. C. D.7.已知为定义在上的奇函数,且满足当时,,则()A. B. C. D.8.已知集合,若,则实数的取值范围为()A. B. C. D.9.已知平面向量,满足,且,则与的夹角为()A. B. C. D.10.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A. B. C. D.11.已知集合则()A. B. C. D.12.已知函数,若有2个零点,则实数的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,,则___________.14.现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有____种.(用数字作答)15.西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个数能构成勾股数的概率为__________.16.设满足约束条件,则的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)记为数列的前项和,已知,等比数列满足,.(1)求的通项公式;(2)求的前项和.18.(12分)如图在四边形中,,,为中点,.(1)求;(2)若,求面积的最大值.19.(12分)如图,在四棱锥中底面是菱形,,是边长为的正三角形,,为线段的中点.求证:平面平面;是否存在满足的点,使得?若存在,求出的值;若不存在,请说明理由.20.(12分)设函数.(Ⅰ)讨论函数的单调性;(Ⅱ)如果对所有的≥0,都有≤,求的最小值;(Ⅲ)已知数列中,,且,若数列的前n项和为,求证:.21.(12分)如图,在四棱锥中,底面为直角梯形,,,,,,点、分别为,的中点,且平面平面.(1)求证:平面.(2)若,求直线与平面所成角的正弦值.22.(10分)在某社区举行的2020迎春晚会上,张明和王慧夫妻俩参加该社区的“夫妻蒙眼击鼓”游戏,每轮游戏中张明和王慧各蒙眼击鼓一次,每个人击中鼓则得积分100分,没有击中鼓则扣积分50分,最终积分以家庭为单位计分.已知张明每次击中鼓的概率为,王慧每次击中鼓的概率为;每轮游戏中张明和王慧击中与否互不影响,假设张明和王慧他们家庭参加两轮蒙眼击鼓游戏.(1)若家庭最终积分超过200分时,这个家庭就可以领取一台全自动洗衣机,问张明和王慧他们家庭可以领取一台全自动洗衣机的概率是多少?(2)张明和王慧他们家庭两轮游戏得积分之和的分布列和数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

由共轭复数的定义得到,通过三角函数值的正负,以及复数的几何意义即得解【详解】由题意得,因为,,所以在复平面内对应的点位于第二象限.故选:B【点睛】本题考查了共轭复数的概念及复数的几何意义,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.2、B【解析】

根据题意可得,利用向量的数量积即可求解夹角.【详解】因为即而所以夹角为故选:B【点睛】本题考查了向量数量积求夹角,需掌握向量数量积的定义求法,属于基础题.3、D【解析】

写出二项式的通项公式,再分析的系数求解即可.【详解】二项式展开式的通项为,令,得,故项的系数为.故选:D【点睛】本题主要考查了二项式定理的运算,属于基础题.4、A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:∵e=因为渐近线方程为y=±bax点睛:已知双曲线方程x2a25、B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.6、C【解析】

,分子分母同乘以分母的共轭复数即可.【详解】由已知,,故的虚部为.故选:C.【点睛】本题考查复数的除法运算,考查学生的基本运算能力,是一道基础题.7、C【解析】

由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【详解】由题意,,则函数的周期是,所以,,又函数为上的奇函数,且当时,,所以,.故选:C.【点睛】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.8、A【解析】

解一元二次不等式化简集合的表示,求解函数的定义域化简集合的表示,根据可以得到集合、之间的关系,结合数轴进行求解即可.【详解】,.因为,所以有,因此有.故选:A【点睛】本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查了函数的定义域,考查了数学运算能力.9、C【解析】

根据,两边平方,化简得,再利用数量积定义得到求解.【详解】因为平面向量,满足,且,所以,所以,所以,所以,所以与的夹角为.故选:C【点睛】本题主要考查平面向量的模,向量的夹角和数量积运算,属于基础题.10、D【解析】

试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的,剩余部分体积是正方体体积的,所以截去部分体积与剩余部分体积的比值为,故选D.考点:本题主要考查三视图及几何体体积的计算.11、B【解析】

解对数不等式可得集合A,由交集运算即可求解.【详解】集合解得由集合交集运算可得,故选:B.【点睛】本题考查了集合交集的简单运算,对数不等式解法,属于基础题.12、C【解析】

令,可得,要使得有两个实数解,即和有两个交点,结合已知,即可求得答案.【详解】令,可得,要使得有两个实数解,即和有两个交点,,令,可得,当时,,函数在上单调递增;当时,,函数在上单调递减.当时,,若直线和有两个交点,则.实数的取值范围是.故选:C.【点睛】本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

因为,所以,又,所以,则,所以.14、36【解析】

先优先考虑甲、乙两人不相邻的排法,在此条件下,计算甲不排在两端的排法,最后相减即可得到结果.【详解】由题意得5人排成一排,甲、乙两人不相邻,有种排法,其中甲排在两端,有种排法,则6人排成一排,甲、乙两人不相邻,且甲不排在两端,共有(种)排法.所以本题答案为36.【点睛】排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决这类问题时就要遵循一定的解题原则,如特殊元素、位置优先原则、先取后排原则、先分组后分配原则、正难则反原则等,只有这样我们才能有明确的解题方向.同时解答组合问题时必须心思细腻、考虑周全,这样才能做到不重不漏,正确解题.15、【解析】

由组合数结合古典概型求解即可【详解】从11个数中随机抽取3个数有种不同的方法,其中能构成勾股数的有共三种,所以,所求概率为.故答案为【点睛】本题考查古典概型与数学文化,考查组合问题,数据处理能力和应用意识.16、【解析】

作出可行域,将目标函数整理为可视为可行解与的斜率,则由图可知或,分别计算出与,再由不等式的简单性质即可求得答案.【详解】作出满足约束条件的可行域,显然当时,z=0;当时将目标函数整理为可视为可行解与的斜率,则由图可知或显然,联立,所以则或,故或综上所述,故答案为:【点睛】本题考查分式型目标函数的线性规划问题,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)当时,;当时,.【解析】

(1)利用数列与的关系,求得;(2)由(1)可得:,,算出公比,利用等比数列的前项和公式求出.【详解】(1)当时,,当时,,因为适合上式,所以.(2)由(1)得,,设等比数列的公比为,则,解得,当时,,当时,.【点睛】本题主要考查数列与的关系、等比数列的通项公式、前项和公式等基础知识,考查运算求解能力..18、(1)1;(2)【解析】

(1),在和中分别运用余弦定理可表示出,运用算两次的思想即可求得,进而求出;(2)在中,根据余弦定理和基本不等式,可求得,再由三角形的面积公式以及正弦函数的有界性,求出的面积的最大值.【详解】(1)由题设,则在和中由余弦定理得:,即解得,∴(2)在中由余弦定理得,即,∴所以面积的最大值为,此时.【点睛】本题主要考查余弦定理在解三角形中的应用,以及三角形面积公式的应用,意在考查学生的数学运算能力,属于中档题.19、证明见解析;2.【解析】

利用面面垂直的判定定理证明即可;由,知,所以可得出,因此,的充要条件是,继而得出的值.【详解】解:证明:因为是正三角形,为线段的中点,所以.因为是菱形,所以.因为,所以是正三角形,所以,而,所以平面.又,所以平面.因为平面,所以平面平面.由,知.所以,,.因此,的充要条件是,所以,.即存在满足的点,使得,此时.【点睛】本题主要考查平面与平面垂直的判定、三棱锥的体积等基础知识;考查空间想象能力、运算求解能力、推理论证能力和创新意识;考查化归与转化、函数与方程等数学思想,属于难题.20、(Ⅰ)函数在上单调递减,在单调递增;(Ⅱ);(Ⅲ)证明见解析.【解析】

(Ⅰ)先求出函数f(x)的导数,通过解关于导数的不等式,从而求出函数的单调区间;(Ⅱ)设g(x)=f(x)﹣ax,先求出函数g(x)的导数,通过讨论a的范围,得到函数的单调性,从而求出a的最小值;(Ⅲ)先求出数列是以为首项,1为公差的等差数列,,,问题转化为证明:,通过换元法或数学归纳法进行证明即可.【详解】解:(Ⅰ)f(x)的定义域为(﹣1,+∞),,当时,f′(x)<2,当时,f′(x)>2,所以函数f(x)在上单调递减,在单调递增.(Ⅱ)设,则,因为x≥2,故,(ⅰ)当a≥1时,1﹣a≤2,g′(x)≤2,所以g(x)在[2,+∞)单调递减,而g(2)=2,所以对所有的x≥2,g(x)≤2,即f(x)≤ax;(ⅱ)当1<a<1时,2<1﹣a<1,若,则g′(x)>2,g(x)单调递增,而g(2)=2,所以当时,g(x)>2,即f(x)>ax;(ⅲ)当a≤1时,1﹣a≥1,g′(x)>2,所以g(x)在[2,+∞)单调递增,而g(2)=2,所以对所有的x>2,g(x)>2,即f(x)>ax;综上,a的最小值为1.(Ⅲ)由(1﹣an+1)(1+an)=1得,an﹣an+1=an•an+1,由a1=1得,an≠2,所以,数列是以为首项,1为公差的等差数列,故,,,⇔,由(Ⅱ)知a=1时,,x>2,即,x>2.法一:令,得,即因为,所以,故.法二:⇔下面用数学归纳法证明.(1)当n=1时,令x=1代入,即得,不等式成立(1)假设n=k(k∈N*,k≥1)时,不等式成立,即,则n=k+1时,,令代入,得,即:,由(1)(1)可知不等式对任何n∈N*都成立.故.考点:1利用导数研究函数的单调性;1、利用导数研究函数的最值;3、数列的通项公式;4、数列的前项和;5、不等式的证明.21、(1)见解析(2)【解析】

(1)首先可得,再面面垂直的性质可得平面,即可得到,再由,即可得到线面垂直;(2)过点做平面的垂线,以为原点,分别以,,为,,轴建立空间直角坐标系,利用空间向量法求出线面角;【详解】解:(1)∵,点为的中点,∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分别为,的中点,∴,∴,又平面,平面,,∴平面.(2)过点做平面的垂线,以为原点,分别以,,为,,轴建立空间直角坐标系,∵,∴,,,,∴,,,设平面的法向量为,由,得,令,得,∴,∴直线与平面所成角的正弦值为.【点睛】本题考查线面垂直的判定,面面垂直的性质定理的应用,利用空间向量法求线面角,属于中档题.22、(1)(2)详见解析【解析】

(1)要积分超过分,则需两人共击中次,或者击中次,由此利用相互独立事件概率计算公式,计算出所求概率.(2)求得的所有可能取值,根据相互独立事件概率计算公式,计算出分布列并

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论