2022-2023学年山东省新泰市新甫中学数学八年级第一学期期末考试模拟试题含解析_第1页
2022-2023学年山东省新泰市新甫中学数学八年级第一学期期末考试模拟试题含解析_第2页
2022-2023学年山东省新泰市新甫中学数学八年级第一学期期末考试模拟试题含解析_第3页
2022-2023学年山东省新泰市新甫中学数学八年级第一学期期末考试模拟试题含解析_第4页
2022-2023学年山东省新泰市新甫中学数学八年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图所示,有一条线段是()的中线,该线段是().A.线段GH B.线段AD C.线段AE D.线段AF2.下列命题中,属于真命题的是().A.两个锐角之和为钝角 B.同位角相等C.钝角大于它的补角 D.相等的两个角是对顶角3.下列因式分解结果正确的是()A. B.C. D.4.若一个多边形的各内角都等于140°,则该多边形是()A.五边形 B.六边形 C.八边形 D.九边形5.如图,观察图中的尺规作图痕迹,下列说法错误的是()A. B. C. D.6.如图,在数轴上数表示,的对应点分别是、,是的中点,则点表示的数()A. B. C. D.7.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,若DE=15cm,BE=8cm,则BC的长为()A.15cm B.17cm C.30cm D.32cm8.如图,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:其中正确的结论有()①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN;⑤△AFN≌△AEM.A.2个 B.3个 C.4个 D.5个9.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.00000000034米,将这个数用科学记数法表示为A. B. C. D.10.如图,在中,平分,平分,且交于,若,则的值为A.36 B.9 C.6 D.1811.下列命题中,是真命题的是()A.0的平方根是它本身B.1的算术平方根是﹣1C.是最简二次根式D.有一个角等于60°的三角形是等边三角形12.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A. B.4 C. D.二、填空题(每题4分,共24分)13.如图,点O为等腰三角形ABC底边BC的中点,,,腰AC的垂直平分线EF分别交AB、AC于E、F点,若点P为线段EF上一动点,则△OPC周长的最小值为_________.14.如图,已知A(3,0),B(0,﹣1),连接AB,过点B的垂线BC,使BC=BA,则点C坐标是_____.15.PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也可称为可入肺颗粒物,它们含有一定量的有毒、有害物质,对人体健康和大气环境质量有很大影响.2.3μm用科学记数法可表示为_____________m.16.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105°,则∠ADC=°.17.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1米),却踩伤了花草.18.到点P的距离等于4cm的点的轨迹是_____.三、解答题(共78分)19.(8分)学校为美化环境,计划购进菊花和绿萝共盆,菊花每盆元,绿萝每盆元,若购买菊花和绿萝的总费用不超过元,则最多可以购买菊花多少盆?20.(8分)如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=80°,∠C=54°,求∠DAC、∠BOA的度数.21.(8分)计算:(1)﹣(1﹣)0;(2)3.22.(10分)本学期我们学习了角平分线的性质定理及其逆定理,那么,你是否还记得它们的具体内容.(1)请把下面两个定理所缺的内容补充完整:角平分线的性质定理:角平分线上的点到______的距离相等.角平分线性质定理的逆定理:到角的两边距离相等的点在______.(2)老师在黑板上画出了图形,把逆定理的已知、求证写在了黑板上,可是有些内容不完整,请你把内容补充完整.已知:如右图,点是内一点,,,垂足分别为、,且______.求证:点在的______上(3)请你完成证明过程:(4)知识运用:如图,三条公路两两相交,现在要修建一个加油站,使加油站到三条公路的距离相等,加油站可选择的位置共有______处.23.(10分)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.24.(10分)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)40002500售价(元/部)43003000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.25.(12分)(1)如图①,在△ABC中,∠C=90°,请用尺规作图作一条直线,把△ABC分割成两个等腰三角形,并说明理由(保留作图痕迹,不写作法);(2)已知内角度数的两个三角形如图②、图③所示,能否分别画一条直线把他们分割成两个等腰三角形?若能,请写出分割成的两个等腰三角形顶角的度数.26.已知,如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:(1)t为______时,△PBQ是等边三角形?(2)P,Q在运动过程中,△PBQ的形状不断发生变化,当t为何值时,△PBQ是直角三角形?说明理由.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知:线段AD是△ABC的中线.故选B.【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.2、C【分析】根据初中几何的相关概念进行判断,确定真命题【详解】A.钝角为大于90°且小于180°的角,两个锐角之和未满足条件,假命题B.同位角不一定相等,假命题C.钝角的补角小于90°,钝角大于90°且小于180°,真命题D.如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,假命题【点睛】本题考查了初中几何中的几个基本概念,熟练掌握钝角、锐角、同位角、补角以及对顶角是解题的关键3、D【分析】利用提取公因式法、完全平方公式逐项进行因式分解即可.【详解】解:A、原式,故本选项不符合题意;B、原式,故本选项不符合题意;C、原式,故本选项不符合题意;D、原式,故本选项符合题意,故选:D.【点睛】本题考查了提公因式法与公式法分解因式,属于基础题,关键是掌握因式分解的方法.4、D【分析】先求得每个外角的度数,然后利用360度除以外角的底数即可求解.【详解】每个外角的度数是:180°-140°=40°,

则多边形的边数为:360°÷40°=1.

故选:D.【点睛】考查了多边形的内角与外角.解题关键利用了任意多边形的外角和都是360度.5、A【分析】由作法知,∠DAE=∠B,进而根据同位角相等,两直线平行可知AE∥BC,再由平行线的性质可得∠C=∠EAC.【详解】由作法知,∠DAE=∠B,∴AE∥BC,∴∠C=∠EAC,∴B、C、D正确;无法说明A正确.故选A.【点睛】本题主要考查了尺规作图,平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.6、C【分析】先求出线段BC的长,然后利用中点的性质即可解答;【详解】∵C点表示,B点表示2,∴,又∵是的中点,∴,点A表示的数为.故选:C.【点睛】本题主要考查了实数与数轴的知识点,准确计算是解题的关键.7、D【分析】先利用角平分线的性质得到DC=15,再根据勾股定理计算出BD,然后计算CD+BD即可.【详解】解:∵AD平分∠CAB,DC⊥AC,DE⊥AB,∴DC=DE=15,在Rt△BDE中,BD==17,∴BC=CD+BD=15+17=32(cm).故选:D.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.8、C【分析】①正确.可以证明△ABE≌△ACF可得结论.②正确,利用全等三角形的性质可得结论.③正确,根据ASA证明三角形全等即可.④错误,本结论无法证明.⑤正确.根据ASA证明三角形全等即可.【详解】∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴BE=CF,AF=AE,故②正确,∠BAE=∠CAF,∠BAE−∠BAC=∠CAF−∠BAC,∴∠1=∠2,故①正确,∵△ABE≌△ACF,∴AB=AC,又∠BAC=∠CAB,∠B=∠C△ACN≌△ABM(ASA),故③正确,CD=DN不能证明成立,故④错误∵∠1=∠2,∠F=∠E,AF=AE,∴△AFN≌△AEM(ASA),故⑤正确,故选:C.【点睛】本题考查三角形全等的判定方法和三角形全等的性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.9、C【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).0.00000000034第一个有效数字前有10个0(含小数点前的1个0),从而.故选C.10、A【分析】先根据角平分线的定义、角的和差可得,再根据平行线的性质、等量代换可得,然后根据等腰三角形的定义可得,从而可得,最后在中,利用勾股定理即可得.【详解】平分,平分,,,,,,,,在中,由勾股定理得:,故选:A.【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.11、A【分析】根据平方根意义、算术平方根的定义、最简二次根式的定义、等边三角形的判定逐一分析即可【详解】解:A、0的平方根是它本身,本选项说法是真命题;B、1的算术平方根是1,本选项说法是假命题;C、不是最简二次根式,本选项说法是假命题;D、有一个角等于60°的等腰三角形是等边三角形,本选项说法是假命题;故选:A.【点睛】本题考查了平方根意义、算术平方根的定义、最简二次根式的定义、等边三角形的判定,熟练掌握相关知识是解题的关键12、B【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.二、填空题(每题4分,共24分)13、1.【分析】连接AO,由于△ABC是等腰三角形,点O是BC边的中点,故AO⊥BC,再根据勾股定理求出AO的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AO的长为CP+PO的最小值,由此即可得出结论.【详解】连接AO,

∵△ABC是等腰三角形,点O是BC边的中点,

∴AO⊥BC,∴,∵EF是线段AC的垂直平分线,

∴点C关于直线EF的对称点为点A,

∴AO的长为CP+PO的最小值,∴△OPC周长的最小值.故答案为:1.【点睛】本题考查的是轴对称-最短路线问题以及勾股定理,熟知等腰三角形三线合一的性质是解答此题的关键.14、C(1,﹣4)【分析】过点作CE⊥y轴于E,证明△AOB≌△BEC(AAS),得出OA=BE,OB=CE,再求出OA=3,OB=1,即可得出结论;【详解】解:如图,过点作CE⊥y轴于E,∴∠BEC=90°,∴∠BCE+∠CBE=90°,∵AB⊥BC,∴∠ABC=90°,∴∠ABO+∠CBE=90°,∴∠ABO=∠BCE,在△AOB和△BEC中,,∴△AOB≌△BEC(AAS),∴OA=BE,OB=CE,∵A(3,0),B(0,﹣1),∴OA=3,OB=1,∴CE=1,BE=3,∴OE=OB+BE=4,∴C(1,﹣4).【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,坐标与图形,余角的性质等知识,构造出全等三角形是解本题的关键.15、【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】2.3μm=2.3×0.000001m=2.3×10﹣6m.故答案为.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16、50【解析】试题分析:由AC=AD=DB,可知∠B=∠BAD,∠ADC=∠C,设∠ADC=x,可得∠B=∠BAD=x,因此可根据三角形的外角,可由∠BAC=105°,求得∠DAC=105°-x,所以在△ADC中,可根据三角形的内角和可知∠ADC+∠C+∠DAC=180°,因此2x+105°-x=180°,解得:x=50°.考点:三角形的外角,三角形的内角和17、8【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长AB===10米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本题考查的是勾股定理的应用,属于基础应用题,只需学生熟练掌握勾股定理,即可完成.18、以P为圆心4cm长为半径的圆【分析】根据到定点的距离等于定长的点都在圆上,反过来圆上各点到定点的距离等于定长,得出结论到点P的距离等于4cm的点的轨迹是以P为圆心,以4cm为半径的圆.【详解】到点P的距离等于4cm的点的轨迹是以P为圆心,以4cm为半径的圆.故答案为:以P为圆心,以4cm为半径的圆.【点睛】本题考查了学生的理解能力和画图能力,到点P的距离等于4cm的点的轨迹是以P为圆心,以4cm为半径的圆.三、解答题(共78分)19、最多可以购买菊花盆.【分析】设需要购买绿萝x盆,则需要购买菊花(30-x)盆,根据“购买菊花和绿萝的总费用不超过400元”列出不等式并解答.【详解】解:设需要购买菊花盆,则需要购买绿萝盆,则,解之得:.答:最多可以购买菊花盆.【点睛】考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.20、∠DAC=36°;∠BOA=117°【分析】首先利用AD是高,求得∠ADC,进一步求得∠DAC度数可求;利用三角形的内角和求得∠ABC,再由BF是∠ABC的角平分线,求得∠ABO,故∠BOA的度数可求.【详解】解:∵AD是高∴∠ADC=90°∵∠C=54°∴∠DAC=180°﹣90°﹣54°=36°∵∠BAC=80°,∠C=54°,AE是角平分线∴∠BAO=40°,∠ABC=46°∵BF是∠ABC的角平分线∴∠ABO=23°∴∠BOA=180°﹣∠BAO﹣∠ABO=117°【点睛】本题考查了利用角平分线的性质、三角形的内角和定理解决问题的能力,结合图形,灵活运用定理解决问题.21、(1)6;(2)【分析】(1)先根据二次根式的除法法则和零指数幂的意义计算,然后进行减法运算;(2)先把各二次根式化为最简二次根式,然后合并即可.【详解】解:(1)原式=﹣1=7﹣1=6;(2)原式=6=.【点睛】本题考查二次根式的除法法则、零指数幂的意义、二次根式的化简,解题的关键是掌握二次根式的除法法则、零指数幂的意义、二次根式的化简.22、(1)这个角的两边,角平分线上;(2)PE,平分线上;(3)见解析;(1)1【分析】(1)根据角平分线的性质定理和判定定理解答;

(2)根据题意结合图形写出已知;

(3)作射线OP,证明Rt△OPD≌Rt△OPE即可;

(1)根据角平分线的性质定理解答.【详解】解:(1)角平分线性质定理:角平分线上的点到这个角的两边的距离相等.

角平分线判定定理:到角的两边距离相等的点在角平分线上,

故答案为:这个角的两边;角平分线上;

(2)已知:如图1,点P是∠AOB内一点,PD⊥AO,PE⊥OB,垂足分别为D、E,且PD=PE,求证:点P在∠AOB的平分线上.

故答案为:PE;平分线上;(3)如图:作射线,,,在和中,∴∴∴是的平分线,即点在的平分线上.(1)如图2,M、N、G、H即为所求,

故答案为:1.【点睛】本题考查的是角平分线的性质定理和判定定理的应用,掌握角的平分线上的点到角的两边的距离相等、到角的两边距离相等的点在角平分线上是解题的关键.23、(1)y=﹣2x+1(2)18元【分析】(1)由图象可知y与x是一次函数关系,由函数图象过点(11,10)和(15,2),用待定系数法即可求得y与x的函数关系式.(2)根据(1)求出的函数关系式,再求出每件该商品的利润,即可求得求超市每天销售这种商品所获得的利润.【详解】解:(1)设y=kx+b(k≠0),由图象可知,,解得∴销售量y与定价x之间的函数关系式是:y=﹣2x+1.(2)超市每天销售这种商品所获得的利润是:W=(﹣2×13+1)(13﹣10)=1824、(1)商场计划购进甲种手机20部,乙种手机30部.(2)当该商场购进甲种手机11部,乙种手机40部时,全部销售后获利最大.最大毛利润为2.41万元.【分析】(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为11.1万元和两种手机的销售利润为2.1万元建立方程组求出其解即可.(2)设甲种手机减少a部,则乙种手机增加2a部,表示出购买的总资金,由总资金部超过16万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润.【详解】解:(1)设商场计划购进甲种手机x部,乙种手机y部,根据题意,得解得:.答:商场计划购进甲种手机20部,乙种手机30部.(2)设甲种手机减少a部,则乙种手机增加2a部,根据题意,得,解得:a≤1.设全部销售后获得的毛利润为W元,由题意,得.∵k=0.07>0,∴W随a的增大而增大.∴当a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论