版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省永州祁阳县联考数学九上期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列图形中是中心对称图形的共有()A.1个 B.2个 C.3个 D.4个2.已知正比例函数y=kx的图象经过第二、四象限,则一次函数y=kx﹣k的图象可能是图中的()A. B.C. D.3.已知反比例函数的图象过点则该反比例函数的图象位于()A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限4.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45° B.60° C.75° D.85°5.对于二次函数y=﹣2x2,下列结论正确的是()A.y随x的增大而增大 B.图象关于直线x=0对称C.图象开口向上 D.无论x取何值,y的值总是负数6.某市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所数据120000000用科学记数法表示为()A.12×108 B.1.2×108 C.1.2×109 D.0.12×1097.下列各点在抛物线上的是()A. B. C. D.8.如图,l1∥l2∥l3,若,DF=6,则DE等于()A.3 B.3.2 C.3.6 D.49.上蔡县是古蔡国所在地,有着悠久的历史,拥有很多重点古迹.某中学九年级历史爱好者小组成员小华和小玲两人计划在寒假期间从“蔡国故城、白圭庙、伏羲画卦亭”三个古迹景点随机选择其中一个去参观,两人恰好选择同一古迹景点的概率是()A. B. C. D.10.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30° B.15° C.10° D.20°二、填空题(每小题3分,共24分)11.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为_____.12.从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是__________.13.如图,小正方形构成的网络中,半径为1的⊙O在格点上,则图中阴影部分两个小扇形的面积之和为▲(结果保留).14.如图,在中,交于点,交于点.若、、,则的长为_________.15.如图,是的直径,点在上,且,垂足为,,,则__________.16.布袋中装有3个红球和4个白球,它们除颜色外其余都相同,如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是_______.17.下列四个函数:①②③④中,当x<0时,y随x的增大而增大的函数是______(选填序号).18.我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x步,那么根据题意列出的方程为_____.三、解答题(共66分)19.(10分)现有四张正面分别印有和四种图案,并且其余完全相同的卡片,现将印有图案的一面朝下,并打乱摆放顺序,请用列表或画树状图的方法解决下列问题:(1)现从中随机抽取一张,记下图案后放回,再从中随机抽取一张卡片,求两次摸到的卡片上印有图案都是轴对称图形的概率;(2)现从中随机抽取-张,记下图案后不放回,再从中随机抽取一张卡片,求两次摸到的卡片上印有图案都是中心对称图形的概率.20.(6分)如图,直线y=ax+b与x轴交于点A(4,0),与y轴交于点B(0,﹣2),与反比例函数y=(x>0)的图象交于点C(6,m).(1)求直线和反比例函数的表达式;(2)连接OC,在x轴上找一点P,使△OPC是以OC为腰的等腰三角形,请求出点P的坐标;(3)结合图象,请直接写出不等式≥ax+b的解集.21.(6分)如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(﹣3,0)和点B(2,0),直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F.(1)求抛物线的解析式;(2)连接AE,求h为何值时,△AEF的面积最大.(3)已知一定点M(﹣2,0),问:是否存在这样的直线y=h,使△BDM是等腰三角形?若存在,请求出h的值和点D的坐标;若不存在,请说明理由.22.(8分)如图,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M(1)如图1,当α=90°时,∠AMD的度数为°(2)如图2,当α=60°时,∠AMD的度数为°(3)如图3,当△OCD绕O点任意旋转时,∠AMD与α是否存在着确定的数量关系?如果存在,请你用表示∠AMD,并图3进行证明;若不确定,说明理由.23.(8分)已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.24.(8分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的80%,则一月份B款运动鞋销售了多少双?(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量)(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.25.(10分)如图,在梯形中,,,是延长线上的点,连接,交于点.(1)求证:∽(2)如果,,,求的长.26.(10分)如图,在网格纸中,、都是格点,以为圆心,为半径作圆,用无刻度的直尺完成以下画图:(不写画法)(1)在圆①中画圆的一个内接正六边形;(2)在图②中画圆的一个内接正八边形.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断.【详解】从左起第2、4个图形是中心对称图形,故选B.【点睛】本题考查了中心对称图形的概念,注意掌握图形绕某一点旋转180°后能够与自身重合.2、A【分析】根据正比例函数y=kx的图象经过第二、四象限可判断出k的符号,进而可得出结论.【详解】解:∵正比例函数y=kx的图象经过第二、四象限,∴k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选:A.【点睛】本题考查的是一次函数的图象与系数的关系,先根据题意判断出k的符号是解答此题的关键.3、C【分析】先根据点的坐标求出k值,再利用反比例函数图象的性质即可求解.【详解】解:∵反比例函数(k≠0)的图象经过点P(2,-3),
∴k=2×(-3)=-6<0,
∴该反比例函数经过第二、四象限.
故选:C.【点睛】本题考查了反比例函数的性质.反比例函数(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.4、D【解析】解:∵B是弧AC的中点,∴∠AOB=2∠BDC=80°.又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.点睛:本题考查了圆周角定理,正确理解圆周角定理求得∠AOB的度数是关键.5、B【分析】根据二次函数的性质可判断A、B、C,代入x=0,可判断D.【详解】解:∵a=﹣2<0,b=0,∴二次函数图象开口向下;对称轴为x=0;当x<0时,y随x增大而增大,当x>0时,y随x增大而减小,故A,C错误,B正确,当x=0时,y=0,故D错误,故选:B.【点睛】本题考查了二次函数的图象和性质,熟练掌握基础知识是解题关键.6、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】120000000=1.2×108,故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7、A【分析】确定点是否在抛物线上,分别把x=0,3,-2,代入中计算出对应的函数值,再进行判断即可.【详解】解:当时,,当时,,当时,,当时,,所以点在抛物线上.故选:.8、C【解析】试题解析:根据平行线分线段成比例定理,可得:设解得:故选C.9、A【分析】直接利用树状图法列举出所有的可能,进而利用概率公式求出答案.;【详解】解:(1)设蔡国故城为“A”,白圭庙为“B”,伏羲画卦亭为“C”,画树状图如下:
由树形图可知所以可能的结果为AA,AB,AC,BA,BB,BC,CA,CB,CC;选择同一古迹景点的结果为AA,BB,CC.∴两人恰好选择同一古迹景点的概率是:.故选A.【点睛】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.10、B【解析】分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.详解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故选B.点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.二、填空题(每小题3分,共24分)11、2π【解析】试题分析:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB=,即圆锥的母线长为2,∴圆锥的侧面积=.考点:圆锥的计算.12、【分析】从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,得出组成的两位数总个数及能被3整除的数的个数,求概率.【详解】∵从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,共有6种情况,它们分别是56、57、65、67、75、76,其中能被3整除的有57、75两种,∴组成两位数能被3整除的概率为:故答案为:【点睛】本题考查的是直接用概率公式求概率问题,找对符合条件的个数和总个数是关键.13、.【解析】如图,先根据直角三角形的性质求出∠ABC+∠BAC的值,再根据扇形的面积公式进行解答即可:∵△ABC是直角三角形,∴∠ABC+∠BAC=90°.∵两个阴影部分扇形的半径均为1,∴S阴影.14、6【分析】接运用平行线分线段成比例定理列出比例式,借助已知条件即可解决问题.【详解】,∵DE∥BC,∴,即,解得:,故答案为:.【点睛】本题主要考查了平行线分线段成比例定理及其应用问题;运用平行线分线段成比例定理正确写出比例式是解题的关键.15、2【分析】先连接OC,在Rt△ODC中,根据勾股定理得出OC的长,即可求得答案.【详解】连接OC,如图,
∵CD=4,OD=3,,
在Rt△ODC中,
∴,∵,∴.故答案为:.【点睛】此题考查了圆的认识,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16、【分析】由题意根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.【详解】解:∵一个布袋里装有3个红球和4个白球,共7个球,∴摸出一个球摸到红球的概率为:,故答案为:.【点睛】本题主要考查概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.17、②③【分析】分别根据一次函数、反比例函数和二次函数的单调性分别进行判断即可.【详解】解:
①在y=-2x+1中,k=-2<0,则y随x的增大而减少;
②在y=3x+2中,k=3>,则y随x的增大而增大;
③在中,k=-3<0,当x<00时,在第二象限,y随x的增大而增大;
④在y=x2+2中,开口向上,对称轴为x=0,所以当x<0时,y随x的增大而减小;
综上可知满足条件的为:②③.
故答案为:②③.【点睛】本题主要考查函数的增减性,掌握一次函数、反比例函数的增减性与k的关系,以及二次函数的增减性是解题的关键.18、x(x﹣12)=1【分析】如果设矩形田地的长为x步,那么宽就应该是(x﹣12)步,根据面积为1,即可得出方程.【详解】解:设矩形田地的长为x步,那么宽就应该是(x﹣12)步.根据矩形面积=长×宽,得:x(x﹣12)=1.故答案为:x(x﹣12)=1.【点睛】本题考查一元二次方程的实际应用,读懂题意根据面积公式列出方程是解题的关键.三、解答题(共66分)19、(1);(2).【分析】(1)先判断出是轴对称图形的字母,再画出树状图,得出所有可能的情况数和两次摸出的都是轴对称图形的字母的情况数,利用概率公式即可得答案;(2)先判断出是中心对称图形的字母,再画出树状图,得出所有可能的情况数和两次摸出的都是中心对称图形的字母的情况数,利用概率公式即可得答案.【详解】(1)在A、F、N、O中,是轴对称图形的字母有A、O,画树状图如下:由树状图可知,共有种可能出现的结果,并且它们都是等可能的,其中“两张卡片图案都是轴对称”的有种情况,分别为:,∴两次摸到的卡片上印有图案都是轴对称图形的概率为=.(2)在A、F、N、O中,是中心对称图形的字母有N、O,画树状图如下:由树状图可知,共有种可能出现的结果,并且它们都是等可能的,其中“两张卡片图案都是中心对称”的有种情况,分别为,∴两次摸到的卡片上印有图案都是中心对称图形概率为=.【点睛】本题考查用列表法或树状图法求概率,注意作图列表时按一定的顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.20、(1)y=x﹣1;y=;(1)点P1的坐标为(,0),点P1的坐标为(﹣,0),(11,0);(3)0<x≤2【解析】(1)根据点A,B的坐标,利用待定系数法即可求出直线AB的函数表达式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点C的坐标,利用待定系数法即可求出反比例函数的表达式;(1)过点C作CD⊥x轴,垂足为D点,利用勾股定理看求出OC的长,分OC=OP和CO=CP两种情况考虑:①当OP=OC时,由OC的长可得出OP的长,进而可求出点P的坐标;②当CO=CP时,利用等腰三角形的性质可得出OD=PD,结合OD的长可得出OP的长,进而可得出点P的坐标;(3)观察图形,由两函数图象的上下位置关系,即可求出不等式≥ax+b的解集.【详解】解:(1)将A(4,0),B(0,﹣1)代入y=ax+b,得:,解得:,∴直线AB的函数表达式为y=x﹣1.当x=2时,y=x﹣1=1,∴点C的坐标为(2,1).将C(2,1)代入y=,得:1=,解得:k=2,∴反比例函数的表达式为y=.(1)过点C作CD⊥x轴,垂足为D点,则OD=2,CD=1,∴OC=.∵OC为腰,∴分两种情况考虑,如图1所示:①当OP=OC时,∵OC=,∴OP=,∴点P1的坐标为(,0),点P1的坐标为(﹣,0);②当CO=CP时,DP=DO=2,∴OP=1OD=11,∴点P3的坐标为(11,0).(3)观察函数图象,可知:当0<x<2时,反比例函数y=的图象在直线y=x﹣1的上方,∴不等式≥ax+b的解集为0<x≤2.【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、等腰三角形的性质、勾股定理以及反比例函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次(反比例)函数的关系式;(1)分OC=OP和CO=CP两种情况求出点P的坐标;(3)根据两函数图象的上下位置关系,找出不等式的解集.21、(1)y=﹣x2﹣x+1;(2)当h=3时,△AEF的面积最大,最大面积是.(3)存在,当h=时,点D的坐标为(,);当h=时,点D的坐标为(,).【分析】(1)利用待定系数法即可解决问题.(2)由题意可得点E的坐标为(0,h),点F的坐标为(,h),根据S△AEF=•OE•FE=•h•=﹣(h﹣3)2+.利用二次函数的性质即可解决问题.(3)存在.分两种情形情形,分别列出方程即可解决问题.【详解】解:如图:(1)∵抛物线y=ax2+bx+1经过点A(﹣3,0)和点B(2,0),∴,解得:.∴抛物线的解析式为y=﹣x2﹣x+1.(2)∵把x=0代入y=﹣x2﹣x+1,得y=1,∴点C的坐标为(0,1),设经过点A和点C的直线的解析式为y=mx+n,则,解得,∴经过点A和点C的直线的解析式为:y=2x+1,∵点E在直线y=h上,∴点E的坐标为(0,h),∴OE=h,∵点F在直线y=h上,∴点F的纵坐标为h,把y=h代入y=2x+1,得h=2x+1,解得x=,∴点F的坐标为(,h),∴EF=.∴S△AEF=•OE•FE=•h•=﹣(h﹣3)2+,∵﹣<0且0<h<1,∴当h=3时,△AEF的面积最大,最大面积是.(3)存在符合题意的直线y=h.∵B(2,0),C(0,1),∴直线BC的解析式为y=﹣3x+1,设D(m,﹣3m+1).①当BM=BD时,(m﹣2)2+(﹣3m+1)2=42,解得m=或(舍弃),∴D(,),此时h=.②当MD=BM时,(m+2)2+(﹣3m+1)2=42,解得m=或2(舍弃),∴D(,),此时h=.∵综上所述,存在这样的直线y=或y=,使△BDM是等腰三角形,当h=时,点D的坐标为(,);当h=时,点D的坐标为(,).【点睛】此题考查了待定系数法求函数的解析式、二次函数的性质、等腰三角形的性质、勾股定理一次函数的应用等知识,此题难度较大,注意掌握方程思想、分类讨论思想与数形结合思想的应用.22、(1)1;(2)2;(3)∠AMD=180°﹣α,证明详见解析.【解析】(1)如图1中,设OA交BD于K.只要证明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,可得∠AMK=∠BOK=1°;(2)如图2中,设OA交BD于K.只要证明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,推出∠AMK=∠BOK=2°;(3)如图3中,设OA交BD于K.只要证明△BOD≌△AOC,可得∠OBD=∠OAC,由∠AKO=∠BKM,推出∠AOK=∠BMK=α.可得∠AMD=180°-α.【详解】(1)如图1中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=1°.故答案为1.(2)如图2中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=2°.故答案为2.(3)如图3中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKO=∠BKM,∴∠AOK=∠BMK=α.∴∠AMD=180°﹣α.【点睛】本题考查几何变换综合题、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用:“8字型”证明角相等.23、证明见解析.【分析】由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,继而可利用ASA判定△AOE≌△COF,继而证得OE=OF.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.【点睛】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.24、(1)40;(2)39000;(3)答案不唯一,详见解析【分析】(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出算式,再进行计算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烟台理工学院《计算机网络》2023-2024学年第一学期期末试卷
- 五年级数学(小数乘法)计算题专项练习及答案
- 许昌学院《空间设计与风水》2022-2023学年第一学期期末试卷
- 许昌学院《二维设计基础》2021-2022学年第一学期期末试卷
- 幼儿园健康饮食教育的有效建议计划
- 实现企业数字化管理的计划
- 反思与总结在工作计划中的地位
- 财务合规检查方案计划
- 地板安装工劳动合同三篇
- 西南医科大学《大学物理》2021-2022学年第一学期期末试卷
- BCG矩阵图文详解
- 飞秒激光加工技术ppt课件(PPT 31页)
- 2020-2021学年广东省广州市天河区五年级上学期期末考试数学模拟试卷及答案解析
- 【双减资料】-双减背景下高效课堂教学实践研究课题总结结题报告
- 李震-数据中心节能关键技术研究PPT通用课件
- 中药饮片入库验收操作规程
- 结构力学——静定梁
- 正体五行择法
- 山东省济南市高新区2021-2022学年上学期八年级期末生物试卷(附答案)
- 很牛的ppt(获奖作品)
- 幼儿园中班健康领域活动《保护牙齿》.ppt
评论
0/150
提交评论