版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
鞍山市重点中学2025届数学九上期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,P为平行四边形ABCD的对称中心,以P为圆心作圆,过P的任意直线与圆相交于点M,N.则线段BM,DN的大小关系是()A.BM>DN B.BM<DN C.BM=DN D.无法确定2.一元二次方程x2﹣2x﹣1=0的根是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2C.x1=1+,x2=1﹣ D.x1=1+,x2=1﹣3.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30° B.40° C.50° D.60°4.在平面直角坐标系中,开口向下的抛物线y=ax2+bx+c的一部分图象如图所示,它与x轴交于A(1,0),与y轴交于点B(0,3),对称轴是直线x=-1.则下列结论正确的是()A.ac>0 B.b2-4ac=0 C.a-b+c<0 D.当-3<x<1时,y>05.下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A. B. C. D.6.已知则()A. B. C. D.7.如图所示几何体的左视图正确的是()A. B. C. D.8.如图,在中,,AB=5,BC=4,点D为边AC上的动点,作菱形DEFG,使点E、F在边AB上,点G在边BC上.若这样的菱形能作出两个,则AD的取值范围是()A. B.C. D.9.袋中有5个白球,x个红球,从中随机摸出一个球,恰为红球的概率为,则x为A.25 B.20 C.15 D.1010.用配方法解一元二次方程,可将方程配方为A. B. C. D.11.用一个平面去截一个圆锥,截面的形状不可能是()A.圆 B.矩形 C.椭圆 D.三角形12.抛物线y=ax2+bx+c(a≠0)如图所示,下列结论:①b2﹣4ac>0;②a+b+c=2;③abc<0;④a﹣b+c<0,其中正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.如图,反比例函数y=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动,tan∠CAB=2,则k=_____.14.若关于的一元二次方程没有实数根.化简:=____________.15.已知⊙O的半径为,圆心O到直线L的距离为,则直线L与⊙O的位置关系是___________.16.在一个不透明的袋子中只装有n个白球和2个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为___.17.在平面直角坐标系中,将抛物线向左平移2个单位后顶点坐标为_______.18.如图,在的矩形方框内有一个不规则的区城(图中阴影部分所示),小明同学用随机的办法求区域的面积.若每次在矩形内随机产生10000个点,并记录落在区域内的点的个数,经过多次试验,计算出落在区域内点的个数的平均值为6700个,则区域的面积约为___________.三、解答题(共78分)19.(8分)如图,在中,,,,将线段绕点按逆时针方向旋转到线段.由沿方向平移得到,且直线过点.(1)求的大小;(2)求的长.20.(8分)如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长;(3)点F在抛物线上运动,是否存在点F,使△BFC的面积为6,如果存在,求出点F的坐标;如果不存在,请说明理由.21.(8分)如图,在平面直角坐标系中,直线l1与x轴交于点A,与y轴交于点B(0,4),OA=OB,点C(﹣3,n)在直线l1上.(1)求直线l1和直线OC的解析式;(2)点D是点A关于y轴的对称点,将直线OC沿y轴向下平移,记为l2,若直线l2过点D,与直线l1交于点E,求△BDE的面积.22.(10分)一名大学毕业生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为80元/件,经市场调查发现,该产品的日销售量(单位:件)与销售单价(单位:元/件)之间满足一次函数关系,如图所示.(1)求与之间的函数解析式,并写出自变量的取值范围;(2)求每天的销售利润(单位:元)与销售单价之间的函数关系式,并求出每件销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)这名大学生计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?23.(10分)如图,在中,,,,点分别是边的中点,连接.将绕点顺时针方向旋转,记旋转角为.①②③④(1)问题发现:当时,.(2)拓展探究:试判断:当时,的大小有无变化?请仅就图②的情况给出证明.(3)问题解决:当旋转至三点共线时,如图③,图④,直接写出线段的长.24.(10分)定义:如图1,在中,把绕点逆时针旋转()并延长一倍得到,把绕点顺时针旋转并延长一倍得到,连接.当时,称是的“倍旋三角形”,边上的中线叫做的“倍旋中线”.特例感知:(1)如图1,当,时,则“倍旋中线”长为______;如图2,当为等边三角形时,“倍旋中线”与的数量关系为______;猜想论证:(2)在图3中,当为任意三角形时,猜想“倍旋中线”与的数量关系,并给予证明.25.(12分)如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.判断△ABC的形状,并证明你的结论;26.如图,抛物线与直线相交于,两点,且抛物线经过点(1)求抛物线的解析式.(2)点是抛物线上的一个动点(不与点点重合),过点作直线轴于点,交直线于点.当时,求点坐标;(3)如图所示,设抛物线与轴交于点,在抛物线的第一象限内,是否存在一点,使得四边形的面积最大?若存在,请求出点的坐标;若不存在,说明理由.
参考答案一、选择题(每题4分,共48分)1、C【解析】分析:连接BD,根据平行四边形的性质得出BP=DP,根据圆的性质得出PM=PN,结合对顶角的性质得出∠DPN=∠BPM,从而得出三角形全等,得出答案.详解:连接BD,因为P为平行四边形ABCD的对称中心,则P是平行四边形两对角线的交点,即BD必过点P,且BP=DP,∵以P为圆心作圆,∴P又是圆的对称中心,∵过P的任意直线与圆相交于点M、N,∴PN=PM,∵∠DPN=∠BPM,∴△PDN≌△PBM(SAS),∴BM=DN.点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.2、C【分析】利用一元二次方程的公式法求解可得.【详解】解:∵a=1,b=﹣2,c=﹣1,∴△=(﹣2)2﹣4×1×(﹣1)=8>0,则x==1±,即x1=1+,x2=1﹣,故选:C.【点睛】本题考查了一元二次方程的解法,根据一元二次方程的特征,灵活选择解法是解题的关键.3、C【解析】试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故选C.考点:1.面动旋转问题;2.平行线的性质;3.旋转的性质;4.等腰三角形的性质.4、D【分析】根据二次函数图象和性质逐项判断即可.【详解】解:∵抛物线y=ax2+bx+c的图象开口向下,与y轴交于点B(0,3),∴a<0,c>0,∴ac<0,故A选项错误;∵抛物线y=ax2+bx+c与x轴有两个交点,∴b2-4ac>0,故B选项错误;∵对称轴是直线x=-1,∴当x=-1时,y>0,即a-b+c>0,故C选项错误;∵抛物线y=ax2+bx+c对称轴是直线x=-1,与x轴交于A(1,0),∴另一个交点为(-3,0),∴当-3<x<1时,y>0,故D选项正确.故选:D.【点睛】本题考查二次函数的图象和性质.熟练掌握二次函数的图象和性质是解题的关键.5、A【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【详解】解:A、不是中心对称图形,故此选项正确;B、是中心对称图形,故此选项错误;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选A.【点睛】此题主要考查了中心对称图形的定义,判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、A【解析】根据特殊角的三角函数值求解即可.【详解】∵,∴,故选:A.【点睛】本题考查了特殊角的三角函数值,比较简单,熟记特殊角的三角函数值是解题的关键.7、A【分析】左视图是从物体的左面看得到的视图,找到从左面看所得到的图形即可.【详解】该几何体的左视图为:是一个矩形,且矩形中有两条横向的虚线.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图8、B【分析】因为在中只能作出一个正方形,所以要作两个菱形则AD必须小于此时的AD,也即这是AD的最大临界值;当AD等于菱形边长时,这时恰好可以作两个菱形,这是AD最小临界值.然后分别在这2种情形下,利用相似三角形的性质求出AD即可.【详解】过C作交DG于M由三角形的面积公式得即,解得①当菱形DEFG为正方形时,则只能作出一个菱形设:,为菱形,,,即,得()若要作两个菱形,则;②当时,则恰好作出两个菱形设:,过D作于H,由①知,,,得综上,故选:B.【点睛】本题考查了相似三角形的性质、锐角三角函数,依据图形的特点判断出两个临界值是解题关键.9、B【解析】考点:概率公式.分析:根据概率的求法,除去红球的概率,就是白球的概率.找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从中任意取一个,恰为红球的概率为4/5,,那从中任意取一个,恰为白球的概率就为1/5,据题意得5/(5+x)=1/5,解得x=1.∴袋中有红球1个.故选B.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m/n10、A【解析】试题解析:故选A.11、B【分析】利用圆锥的形状特点解答即可.【详解】解:平行于圆锥的底面的截面是圆,故A可能;截面不可能是矩形,故B符合题意;斜截且与底面不相交的截面是椭圆,故C可能;过圆锥的顶点的截面是三角形,故D可能.故答案为B.【点睛】本题主要考查了截一个几何体所得的截面的形状,解答本题的关键在于明确截面的形状既与被截的几何体有关,还与截面的角度和方向有关.12、D【分析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线与x轴有两不同的交点,∴△=b2﹣4ac>1.故①正确;②∵抛物线y=ax2+bx+c的图象经过点(1,2),∴代入得a+b+c=2.故②正确;③∵根据图示知,抛物线开口方向向上,∴a>1.又∵对称轴x=﹣<1,∴b>1.∵抛物线与y轴交与负半轴,∴c<1,∴abc<1.故③正确;④∵当x=﹣1时,函数对应的点在x轴下方,则a﹣b+c<1,故④正确;综上所述,正确的结论是:①②③④,共有4个.故选:D.【点睛】本题考查了二次函数图象与系数的关系.会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(每题4分,共24分)13、-1【分析】连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出△AOE∽△COF,根据相似三角形的性质得出比例式,再由tan∠CAB=2,可得出CF•OF的值,进而得到k的值.【详解】如图,连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F.∵由直线AB与反比例函数y的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF.又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴,∵tan∠CAB2,∴CF=2AE,OF=2OE.又∵AE•OE=2,CF•OF=|k|,∴|k|=CF•OF=2AE×2OE=4AE×OE=1,∴k=±1.∵点C在第二象限,∴k=﹣1.故答案为:﹣1.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,解答本题的关键是求出CF•OF=1.解答该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反比例函数图象上点的坐标特征找出结论.14、【分析】首先根据关于x的一元二次方程没有实数根求出a的取值范围,然后利用二次根式的基本性质化简即可.【详解】解:∵关于的一元二次方程没有实数根,∴,解得,当时,原式,故答案为:.【点睛】本题考查了一元二次方程的根的判别式及二次根式的基本性质,解题的关键是根据根的判别式确定未知数的取值范围.15、相交【分析】先根据题意判断出直线与圆的位置关系即可得出结论.【详解】∵⊙O的半径为6cm,圆心O到直线l的距离为5cm,6cm>5cm,∴直线l与⊙O相交,故答案为:相交.【点睛】本题考查的是直线与圆的位置关系,熟知设⊙O的半径为r,圆心O到直线l的距离为d,当d<r时,直线与圆相交是解答此题的关键.16、1.【分析】根据概率公式得到,然后利用比例性质求出n即可.【详解】根据题意得,解得n=1,经检验:n=1是分式方程的解,故答案为:1.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.17、【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】解:y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16).所以,抛物线y=(x+5)(x-3)向左平移2个单位长度后的顶点坐标为(-1-2,-16),即(-3,-16),故答案为:(-3,-16)【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.18、8.04【分析】先利用古典概型的概率公式求概率,再求区域A的面积的估计值.【详解】解:由题意,∵在矩形内随机产生10000个点,落在区域A内点的个数平均值为6700个,∴概率P=,∵4×3的矩形面积为12,∴区域A的面积的估计值为:0.67×12=8.04;故答案为:8.04;【点睛】本题考查古典概型概率公式,考查学生的计算能力,属于中档题.三、解答题(共78分)19、(1);(2)【分析】(1)根据旋转的性质可求得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)根据平移的性质及同角的余角相等证得∠DAE=∠CAB,进而证得△ADE∽△ACB,利用相似的性质求出AE即可.【详解】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB,∴∠ABD=∠ADB=45°,∵△EFG是由△ABC沿CB方向平移得到,∴AB∥EF,∴∠1=∠ABD=45°;(2)由平移的性质得,AE∥CG,∴∠EAC=180°-∠C=90°,∴∠EAB+∠BAC=90°,由(1)知∠DAB=90°,∴∠DAE+∠EAB=90°,∴∠DAE=∠CAB,又∵∠ADE=∠ADB+∠1=90°,∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AC=8,AB=AD=10,∴AE=12.5.【点睛】本题为平移的性质,旋转的性质,相似三角形的判定与性质的综合考查,熟练掌握基础的性质与判定是解题的关键.20、(1)y=﹣x2+2x+3;(2)2;(3)存在,理由见解析.【分析】(1)抛物线y=ax2+2x+c经过点A(0,3),B(-1,0),则c=3,将点B的坐标代入抛物线表达式并解得:b=2,即可求解;
(2)函数的对称轴为:x=1,则点D(1,4),则BE=2,DE=4,即可求解;
(3)△BFC的面积=×BC×|yF|=2|yF|=6,解得:yF=±3,即可求解.【详解】解:(1)抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),则c=3,将点B的坐标代入抛物线表达式并解得:b=2,故抛物线的表达式为:y=﹣x2+2x+3;(2)函数的对称轴为:x=1,则点D(1,4),则BE=2,DE=4,BD==2;(3)存在,理由:△BFC的面积=×BC×|yF|=2|yF|=6,解得:yF=±3,故:﹣x2+2x+3=±3,解得:x=0或2或1,故点F的坐标为:(0,3)或(2,3)或(1﹣,﹣3)或(1+,﹣3);【点睛】本题考查的是二次函数综合运用,涉及到勾股定理的运用、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.21、(1)直线I1的解析式:y=2x+4,直线OC解析式y=x;(2)S△BDE=16.【分析】(1)根据题意先求A的坐标,然后待定系数就AB解析式,把点C的坐标代入,可得n,即可求得直线OC解析式;(2)根据对称性先去D的坐标,根据直线平移,k不变,可求DE解析式,然后求E的坐标,即可求出面积.【详解】解:(1)∵点B(0,4),OA=OB,∴OA=OB==2,∴A(﹣2,0),设OA解析式y=kx+b,∴解得:,∴直线I1的解析式:y=2x+4,∵C(﹣3,n)在直线l1上,∴n=﹣3×2+4n=﹣2∴C(﹣3,﹣2)设OC的解析式:y=k1x∴﹣2=﹣3k1k1=,∴直线OC解析式y=x;(2)∵D点与A点关于y轴对称∴D(2,0)设DE解析式y=x+b′,∴0=×2+b′,∴b′=﹣,∴DE解析式y=x﹣,当x=0,y=﹣,解得:,∴E(﹣4,﹣4),∴S△BDE=×(2+2)(4+4)=16.【点睛】本题考查了两条直线相交与平行问题,用待定系数法解一次函数,一次函数的性质,关键是找出点的坐标.22、(1)();(2),每件销售单价为100元时,每天的销售利润最大,最大利润为2000元;(3)该产品的成本单价应不超过65元.【分析】(1)设y与x之间的函数解析式为:y=kx+b,根据题意列方程组即可得到结论;(2)根据题意得到合适解析式,然后根据二次函数的性质即可得到结论;(3)设产品的成本单价为b元,根据题意列不等式即可得到结论.【详解】(1)设关于的函数解析式为.由图象,得解得即关于的函数解析式是().(2)根据题意,得,∴当时,取得最大值,此时.即每件销售单价为100元时,每天的销售利润最大,最大利润为2000元.(3)设科技创新后成本为元.当时,.解得.答:该产品的成本单价应不超过65元.【点睛】此题主要考查了二次函数和一次函数的应用以及一元二次方程的应用,正确得出函数解析式是解题关键.23、(1);(2)无变化,理由见解析;(3)图③中;图④中;【分析】(1)问题发现:由勾股定理可求AC的长,由中点的性质可求AE,BD的长,即可求解;(2)拓展探究:通过证明△ACE∽△BCD,可得;(3)问题解决:由三角形中位线定理可求DE=1,∠EDC=∠B=90°,由勾股定理可求AD的长,即可求AE的长.【详解】解:(1)问题发现:∵∠B=90°,AB=2,BC=6,∴AC=,∵点D,E分别是边BC,AC的中点,∴AE=EC=,BD=CD=3,∴,故答案为:;(2)无变化;证明如下:∵点,分别是边,的中点,∴由旋转的性质,,,∵,,∴,∴,∴;(3)如图③,∵点D,E分别是边BC,AC的中点,∴DE=AB=1,DE∥AB,∴∠CDE=∠B=90°,∵将△EDC绕点C顺时针方向旋转,∴∠CDE=90°=∠ADC,∴AD=,∴AE=AD+DE=;如图④,由上述可知:AD=,∴;【点睛】本题是相似形综合题,考查了相似三角形的判定和性质,旋转的性质,勾股定理等知识,解题的关键是理解题意,正确寻找相似三角形解决问题,属于中考常考题型.24、(1)①4,②;(2),证明见解析.【分析】(1)如图1,首先证明,再根据直角三角形斜边上的中线等于斜边的一半即可解决问题;如图2,过点A作,易证,根据易得结论.(2)延长到,使得,连接,易证四边形是平行四边形,再证明得,故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烟台理工学院《计算机网络》2023-2024学年第一学期期末试卷
- 五年级数学(小数乘法)计算题专项练习及答案
- 许昌学院《空间设计与风水》2022-2023学年第一学期期末试卷
- 许昌学院《二维设计基础》2021-2022学年第一学期期末试卷
- 幼儿园健康饮食教育的有效建议计划
- 实现企业数字化管理的计划
- 反思与总结在工作计划中的地位
- 财务合规检查方案计划
- 地板安装工劳动合同三篇
- 西南医科大学《大学物理》2021-2022学年第一学期期末试卷
- 学校2025元旦假期安全教育宣传课件
- 人教版八年级物理上册《第六章质量与密度》单元测试卷(带答案)
- 项目经理年度工作总结
- 无人机检测与维修 课件全套 项目1-6 无人机日常检查与故障管理-无人机链路系统检测与维修
- 医学综合英语学习通超星期末考试答案章节答案2024年
- 2024冬至节气的教案
- 《三七蒸制前后质量评价及蒸三七多糖化学成分研究》
- 肝衰竭诊治指南(2024年版)解读
- 铸牢中华民族共同体意识学习通超星期末考试答案章节答案2024年
- 2024粤东西粤北地区教师全员轮训培训心得总结
- 2024AI Agent行业研究报告
评论
0/150
提交评论