云南省昆明市云南师范大附属中学2025届九上数学期末检测模拟试题含解析_第1页
云南省昆明市云南师范大附属中学2025届九上数学期末检测模拟试题含解析_第2页
云南省昆明市云南师范大附属中学2025届九上数学期末检测模拟试题含解析_第3页
云南省昆明市云南师范大附属中学2025届九上数学期末检测模拟试题含解析_第4页
云南省昆明市云南师范大附属中学2025届九上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明市云南师范大附属中学2025届九上数学期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一个不透明的袋子中装有10个只有颜色不同的小球,其中2个红球,3个黄球,5个绿球,从袋子中任意摸出一个球,则摸出的球是绿球的概率为()A. B. C. D.2.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.3.如图,已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,点A、B恰好同时落在反比例函数(x>0)的图象上,则等于()A.3 B.4 C.5 D.64.已知二次函数,当时,随增大而增大,当时,随增大而减小,且满足,则当时,的值为()A. B. C. D.5.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,在随机摸出一个球,两次都摸到黑球的概率是()A. B. C. D.6.二次函数y=﹣x2+2x﹣4,当﹣1<x<2时,y的取值范围是()A.﹣7<y<﹣4 B.﹣7<y≤﹣3 C.﹣7≤y<﹣3 D.﹣4<y≤﹣37.已知点A(,),B(1,),C(2,)是函数图象上的三点,则,,的大小关系是()A.<< B.<< C.<< D.无法确定8.如图为二次函数的图象,在下列说法中:①;②方程的根是,;③④当时,随的增大而减小.不正确的说法有()A.① B.①② C.①③ D.②④9.如图所示为两把按不同比例尺进行刻度的直尺,每把直尺的刻度都是均匀的,已知两把直尺在刻度10处是对齐的,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,则上面直尺的刻度16与下面直尺对应的刻度是()A.19.4 B.19.5 C.19.6 D.19.710.下列方程中,关于x的一元二次方程是()A.2x﹣3=x B.2x+3y=5 C.2x﹣x2=1 D.11.张家口某小区要种植一个面积为3500m2的矩形草坪,设草坪的长为ym,宽为xm,则y关于x的函数解析式为()A.y=3500x B.x=3500y C.y= D.y=12.如图,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于()A.8 B.10 C.12 D.18二、填空题(每题4分,共24分)13.已知二次函数y=ax2-bx+2(a≠0)图象的顶点在第二象限,且过点(1,0),则a的取值范围是_________;若a+b的值为非零整数,则b的值为_________.14.已知两个相似三角形与的相似比为1.则与的面积之比为________.15.△ABC中,∠C=90°,AC=6,BC=8,则sin∠A的值为__________.16.如图,正方形ABEF与正方形BCDE有一边重合,那么正方形BCDE可以看成是由正方形ABEF绕点O旋转得到的,则图中点O的位置为_____.17.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为m(结果保留根号).18.我们定义一种新函数:形如(,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为,和;②图象具有对称性,对称轴是直线;③当或时,函数值随值的增大而增大;④当或时,函数的最小值是0;⑤当时,函数的最大值是1.其中正确结论的个数是______.三、解答题(共78分)19.(8分)已知关于的方程①求证:方程有两个不相等的实数根.②若方程的一个根是求另一个根及的值.20.(8分)已知正方形ABCD中,E为对角线BD上一点,过点E作EF⊥BD交BC于点F,连接DF,G为DF的中点,连接EG,(1)如图1,求证:EG=CG;(2)将图1中的ΔBEF绕点B逆时针旋转45°,如图2,取DF的中点G,连接EG,CG.问((3)将图1中的ΔBEF绕点B逆时计旋转任意角度,如图3,取DF的中点G,连接EG,CG.问(21.(8分)如图,在△ABC中,CD是边AB上的中线,∠B是锐角,sinB=,tanA=,AC=,(1)求∠B的度数和AB的长.(2)求tan∠CDB的值.22.(10分)已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当△ADE是等腰三角形时,请直接写出AE的长.23.(10分)汛期到来,山洪暴发.下表记录了某水库内水位的变化情况,其中表示时间(单位:),表示水位高度(单位:),当时,达到警戒水位,开始开闸放水.02468101214161820141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到.24.(10分)已知:如图,在半圆中,直径的长为6,点是半圆上一点,过圆心作的垂线交线段的延长线于点,交弦于点.(1)求证:;(2)记,,求关于的函数表达式;(3)若,求图中阴影部分的面积.25.(12分)某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第天的成本(元/件)与(天)之间的关系如图所示,并连续50天均以80元/件的价格出售,第天该产品的销售量(件)与(天)满足关系式.(1)第40天,该商家获得的利润是______元;(2)设第天该商家出售该产品的利润为元.①求与之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在出售该产品的过程中,当天利润不低于1000元的共有多少天?26.已知如图,抛物线y=ax2+bx+3与x轴交于点A(3,0),B(﹣1,0),与y轴交于点C,连接AC,点P是直线AC上方的抛物线上一动点(异于点A,C),过点P作PE⊥x轴,垂足为E,PE与AC相交于点D,连接AP.(1)求点C的坐标;(2)求抛物线的解析式;(3)①求直线AC的解析式;②是否存在点P,使得△PAD的面积等于△DAE的面积,若存在,求出点P的坐标,若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、D【解析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【详解】解:绿球的概率:P==,故选:D.【点睛】本题考查概率相关概念,熟练运用概率公式计算是解题的关键.2、C【分析】根据轴对称图形和中心对称图形的概念逐一进行判断即可得.【详解】A、是轴对称图形,不是中心对称图形,故不符合题意;B、是轴对称图形,不是中心对称图形,故不符合题意;C、是轴对称图形,也是中心对称图形,故符合题意;D、是轴对称图形,不是中心对称图形,故不符合题意,故选C.【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.3、D【分析】根据点平移规律,得到点A平移后的点的坐标为(2,3),由此计算k值.【详解】∵已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,∴点A平移后的点坐标为(2,3),∵点A、B恰好同时落在反比例函数(x>0)的图象上,∴,故选:D.【点睛】此题考查点平移的规律,点沿着x轴左右平移的规律是:左减右加;点沿着y轴上下平移的规律是:上加下减,熟记规律是解题的关键.4、A【分析】根据,求得m=3或−1,根据当x<−1时,y随x增大而增大,当x>0时,y随x增大而减小,从而判断m=-1符合题意,然后把x=0代入解析式求得y的值.【详解】解:∵,∴m=3或−1,∵二次函数的对称轴为x=m,且二次函数图象开口向下,又∵当x<−1时,y随x增大而增大,当x>0时,y随x增大而减小,∴−1≤m≤0∴m=-1符合题意,∴二次函数为,当x=0时,y=1.故选:A【点睛】本题考查了二次函数的性质,根据题意确定m=-1是解题的关键.5、A【详解】解:画树状图得:∵共有4种等可能的结果,两次都摸到黑球的只有1种情况,∴两次都摸到黑球的概率是.故选A.6、B【分析】先求出二次函数的对称轴,再根据二次函数的增减性求出最小值和最大值即可.【详解】解:∵y=﹣x2+2x﹣4,=﹣(x2﹣2x+4)=﹣(x﹣1)2﹣1,∴二次函数的对称轴为直线x=1,∴﹣1<x<2时,x=1取得最大值为﹣1,x=﹣1时取得最小值为﹣(﹣1)2+2×(﹣1)﹣4=﹣7,∴y的取值范围是﹣7<y≤﹣1.故选:B.【点睛】本题考查了二次函数与不等式,主要利用了二次函数的增减性和对称性,确定出对称轴从而判断出取得最大值和最小值的情况是解题的关键.7、B【分析】直接根据反比例函数的性质排除选项即可.【详解】因为点A(,),B(1,),C(2,)是函数图象上的三点,,反比例函数的图像在二、四象限,所以在每一象限内y随x的的增大而增大,即;故选B.【点睛】本题主要考查反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.8、A【分析】根据二次函数的图象与性质(对称性、增减性)、以及与二次方程的关系逐个判断即可.【详解】二次函数的图象的开口向下,与y轴正半轴相交,则①不正确二次函数的对称轴为,与x轴的一个交点为与x轴的另一个交点为方程的根是,则②正确二次函数的图象上,所对应的点位于第一象限,即,则③正确由二次函数的图象可知,当时,随的增大而减小,则④正确综上,不正确的说法只有①故选:A.【点睛】本题考查了二次函数的图象与性质(对称性、增减性)、以及与二次方程的关系,掌握理解并灵活运用函数的性质是解题关键.9、C【分析】根据两把直尺在刻度10处是对齐的及上面直尺的刻度11与下面直尺对应的刻度是11.6,得出上面直尺的10个小刻度,对应下面直尺的16个小刻度,进而判断出上面直尺的刻度16与下面直尺对应的刻度即可.【详解】解:由于两把直尺在刻度10处是对齐的,观察图可知上面直尺的刻度11与下面直尺对应的刻度是11.6,即上面直尺的10个小刻度,对应下面直尺的16个小刻度,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,因此上面直尺的刻度16与下面直尺对应的刻度是18+1.6=19.6,故答案为C【点睛】本题考查了学生对图形的观察能力,通过图形得出上面直尺的10个小刻度,对应下面直尺的16个小刻度是解题的关键.10、C【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.11、C【解析】根据矩形草坪的面积=长乘宽,得,得.故选C.12、C【分析】根据矩形的对角线互相平分且相等可得OA=OB=AC,根据邻补角的定义求出∠AOB,然后判断出△AOB是等边三角形,根据等边三角形的性质可得OA=AB,然后求解即可.【详解】∵矩形ABCD的两条对角线交于点O,∴OA=OB=AC,∵∠AOD=10°,∴∠AOB=180°-∠AOD=180°-10°=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=2×6=1.故选C.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟记矩形的对角线互相平分且相等是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据题意可得a<0,再由可以得到b>0,把(1,0)函数得a−b+2=0,导出b和a的关系,从而解出a的范围,再根据a+b的值为非零整数的限制条件,从而得到a,b的值.【详解】依题意知a<0,,a−b+2=0,故b>0,且b=a+2,a=b−2,a+b=a+a+2=2a+2,∴a+2>0,∴−2<a<0,∴−2<2a+2<2,∵a+b的值为非零实数,∴a+b的值为−1,1,∴2a+2=−1或2a+2=1,或,∵b=a+2,或14、2【分析】根据相似三角形的面积比等于相似比的平方,即可求得答案.【详解】解:∵两个相似三角形的相似比为1,

∴这两个三角形的面积之比为2.

故答案为:2.【点睛】此题考查了相似三角形的性质.注意熟记定理是解此题的关键.15、【分析】根据勾股定理及三角函数的定义直接求解即可;【详解】如图,,∴sin∠A,故答案为:【点睛】本题考查了三角函数的定义及勾股定理,熟练掌握三角函数的定义是解题的关键.16、点B或点E或线段BE的中点.【分析】由旋转的性质分情况讨论可求解;【详解】解:∵正方形BCDE可以看成是由正方形ABEF绕点O旋转得到的,∴若点A与点E是对称点,则点B是旋转中心是点B;若点A与点D是对称点,则点B是旋转中心是BE的中点;若点A与点E是对称点,则点B是旋转中心是点E;故答案为:点B或点E或线段BE的中点.【点睛】本题考查了旋转的性质,正方形的性质,利用分类讨论是本题的关键.17、【详解】解:∵∠ACB=30°,∠ADB=60°,

∴∠CAD=30°,

∴AD=CD=60m,

在Rt△ABD中,

AB=AD•sin∠ADB=60×=(m).故答案是:.18、1【解析】由,和坐标都满足函数,∴①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线,②也是正确的;根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此③也是正确的;函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为或,因此④也是正确的;从图象上看,当或,函数值要大于当时的,因此⑤时不正确的;逐个判断之后,可得出答案.【详解】解:①∵,和坐标都满足函数,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线,因此②也是正确的;③根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此③也是正确的;④函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为或,因此④也是正确的;⑤从图象上看,当或,函数值要大于当时的,因此⑤是不正确的;故答案是:1【点睛】理解“鹊桥”函数的意义,掌握“鹊桥”函数与与二次函数之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数与轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.三、解答题(共78分)19、①详见解析;②,k=1【分析】①求出,即可证出结论;②设另一根为x1,根据根与系数的关系即可求出结论.【详解】①解:=k2+8>0∴方程有两个不相等实数根②设另一根为x1,由根与系数的关系:∴,k=1【点睛】此题考查的是判断一元二次方程根的情况和根与系数的关系,掌握与根的情况和根与系数的关系是解决此题的关键.20、(1)见解析;(2)见解析;(3)见解析.【解析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.

(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.

(3)结论依然成立.过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC,得出△MEC是等腰直角三角形,就可以得出结论.【详解】(1)在RtΔFCD中,G为DF∴CG=1同理,在RtΔDEF中,EG=∴EG=CG.(2)如图②,(1)中结论仍然成立,即EG=CG.

理由:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.

∴∠AMG=∠DMG=90°.

∵四边形ABCD是正方形,

∴AD=CD=BC=AB,∠ADG=∠CDG.∠DAB=∠ABC=∠BCD=∠ADC=90°.

在△DAG和△DCG中,

AD=CD∠ADG=∠CDGDG=DG,

∴△DAG≌△DCG(SAS),

∴AG=CG.

∵G为DF的中点,

∴GD=GF.

∵EF⊥BE,

∴∠BEF=90°,

∴∠BEF=∠BAD,

∴AD∥EF,

∴∠N=∠DMG=90°.∠DGM=∠FGNFG=DG∠MDG=∠NFG,

∴△DMG≌△FNG(ASA),

∴MG=NG.

∵∠DA∠AMG=∠N=90°,

∴四边形AENM是矩形,

∴AM=EN,

在△AMG和△ENG中,

AM=EN∠AMG=∠ENGMG=NG,

∴△AMG≌△ENG(SAS),

∴AG=EG,

∴EG=CG;

(3)如图③,(1)中的结论仍然成立.

理由:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN⊥AB于N.

∵MF∥CD,

∴∠FMG=∠DCG,∠MFD=∠CDG.∠AQF=∠ADC=90°

∵FN⊥AB,

∴∠FNH=∠ANF=90°.

∵G为FD中点,

∴GD=GF.

在△MFG和△CDG中

∠FMG=∠DCG∠MFD=∠CDGGF=GD,

∴△CDG≌△MFG(AAS),

∴CD=FM.MG=CG.

∴MF=AB.

∵EF⊥BE,

∴∠BEF=90°.

∵∠NHF+∠HNF+∠NFH=∠BEF+∠EHB+∠EBH=180°,

∴∠NFH=∠EBH.

∵∠A=∠ANF=∠AMF=90°,

∴四边形ANFQ是矩形,

∴∠MFN=90°.

∴∠MFN=∠CBN,

∴∠MFN+∠NFE=∠CBN+∠EBH,

∴∠MFE=∠CBE.

在△EFM和△EBC中

MF=AB∠MFE=∠CBEEF=EB,

∴△EFM≌△EBC(SAS),

∴ME=CE.,∠FEM=∠BEC,

∵∠【点睛】考查了正方形的性质的运用,矩形的判定就性质的运用,旋转的性质的运用,直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.21、(1)∠B的度数为45°,AB的值为3;(1)tan∠CDB的值为1.【分析】(1)作CE⊥AB于E,设CE=x,利用∠A的正切可得到AE=1x,则根据勾股定理得到AC=x,所以x=,解得x=1,于是得到CE=1,AE=1,接着利用sinB=得到∠B=45°,则BE=CE=1,最后计算AE+BE得到AB的长;(1)利用CD为中线得到BD=AB=1.5,则DE=BD-BE=0.5,然后根据正切的定义求解.【详解】(1)作CE⊥AB于E,设CE=x,在Rt△ACE中,∵tanA==,∴AE=1x,∴AC==x,∴x=,解得x=1,∴CE=1,AE=1,在Rt△BCE中,∵sinB=,∴∠B=45°,∴△BCE为等腰直角三角形,∴BE=CE=1,∴AB=AE+BE=3,答:∠B的度数为45°,AB的值为3;(1)∵CD为中线,∴BD=AB=1.5,∴DE=BD﹣BE=1.5﹣1=0.5,∴tan∠CDE===1,即tan∠CDB的值为1.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.解决此类题目的关键是熟练应用勾股定理和锐角三角函数的定义.22、(1)证明见解析;(2)y=x2-x+1=(x-)2+;(3)AE的长为2-或.【分析】(1)根据等腰直角三角形的性质及三角形内角与外角的关系,易证△ABD∽△DCE.

(2)由△ABD∽△DCE,对应边成比例及等腰直角三角形的性质可求出y与x的函数关系式;

(3)当△ADE是等腰三角形时,因为三角形的腰和底不明确,所以应分AD=DE,AE=DE,AD=AE三种情况讨论求出满足题意的AE的长即可.【详解】(1)证明:

∵∠BAC=90°,AB=AC

∴∠B=∠C=∠ADE=45°

∵∠ADC=∠B+∠BAD=∠ADE+∠CDE

∴∠BAD=∠CDE

∴△ABD∽△DCE;

(2)由(1)得△ABD∽△DCE,

∴=,

∵∠BAC=90°,AB=AC=1,

∴BC=,CD=-x,EC=1-y,

∴=,

∴y=x2-x+1=(x-)2+;

(3)当AD=DE时,△ABD≌△CDE,

∴BD=CE,

∴x=1-y,即x-x2=x,

∵x≠0,

∴等式左右两边同时除以x得:x=-1

∴AE=1-x=2-,

当AE=DE时,DE⊥AC,此时D是BC中点,E也是AC的中点,

所以,AE=;

当AD=AE时,∠DAE=90°,D与B重合,不合题意;

综上,在AC上存在点E,使△ADE是等腰三角形,

AE的长为2-或.【点睛】本题考查相似三角形的性质、等腰直角三角形的性质、等腰三角形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.23、(1)见解析;(2)和;(3)预计水位达到.【分析】根据描点的趋势,猜测函数类型,发现当时,与可能是一次函数关系:当时,与就不是一次函数关系:通过观察数据发现与的关系最符合反比例函数.【详解】(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当时,与可能是一次函数关系:设,把,代入得,解得:,,与的关系式为:,经验证,,都满足,因此放水前与的关系式为:,观察图象当时,与就不是一次函数关系:通过观察数据发现:.因此放水后与的关系最符合反比例函数,关系式为:,所以开闸放水前和放水后最符合表中数据的函数解析式为:和.(3)当时,,解得:,因此预计水位达到.【点睛】此题考查二元一次函数的应用,统计图,解题关键在于根据图象猜测函数类型,尝试求出,再验证确切性;也可根据自变量和函数的变化关系进行猜测,关系式确定后,可以求自变量函数的对应值.24、(1)见解析;(2);(3)【分析】(1)根据直径所对的圆周角等于90°,可得∠CAB+∠ABC=90°,根据DO⊥AB,得出∠D+∠DAO=90°,进而可得出结果;(2)先证明,得出,从而可得出结果;(3)设OD与圆弧的交点为F,则根据S阴影=S△AOD-S△AOC-S扇形COF求解.【详解】(1)证明:∵是直径,∴,∴.∵,∴.∴.(2)解:∵,∴.∴.而,∴,∴即,∴.(3)解:设OD与圆弧的交点为F,设,则,∵,∴.在中,,∴.∴∠AOC=60°,∴DO=AO=3.又AO=CO,∴△ACO为等边三角形,S阴影=S△AOD-S扇形COF-S△AOC=.【点睛】本题主要考查圆周角定理的推论、圆中不规则图形面积的求法、等腰三角形的性质、等边三角形的性质与判定等知识,掌握基本性质与判定方法是解题的关键.注意求不规则图形的面积时,结合割补法求解.25、(1)1000(2)①,25,1225;②1.【分析】(1)根据图象可求出BC的解析式,即可求出第40天时的成本为60元,此时的产量为z=40+10=50,则可求得第40天的利润;(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)根据图象得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论