四川省宜宾市中学2025届九上数学期末统考模拟试题含解析_第1页
四川省宜宾市中学2025届九上数学期末统考模拟试题含解析_第2页
四川省宜宾市中学2025届九上数学期末统考模拟试题含解析_第3页
四川省宜宾市中学2025届九上数学期末统考模拟试题含解析_第4页
四川省宜宾市中学2025届九上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省宜宾市中学2025届九上数学期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是()A. B. C. D.2.如图所示,的顶点是正方形网格的格点,则的值为()A. B. C. D.3.如图,在菱形ABCD中,AC与BD相交于点O,AC=8,BD=6,则菱形的周长等于()A.40 B. C.24 D.204.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形5.用配方法解方程x2-4x+3=0时,原方程应变形为()A.(x+1)2=1 B.(x-1)2=1 C.(x+2)2=1 D.(x-2)2=16.如图,在△ABC中,AB=18,BC=15,cosB=,DE∥AB,EF⊥AB,若=,则BE长为()A.7.5 B.9 C.10 D.57.在Rt△ABC中,∠C=90°,若,则的值为()A.1 B. C. D.8.一种商品原价元,经过两次降价后每盒26元,设两次降价的百分率都为,则满足等式()A. B. C. D.9.用一个圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的高为()A. B. C. D.10.如图,在正方形中,点是对角线的交点,过点作射线分别交于点,且,交于点.给出下列结论:;C;四边形的面积为正方形面积的;.其中正确的是()A. B. C. D.11.如图,圆锥的底面半径OB=6cm,高OC=8cm.则这个圆锥的侧面积是()A.30cm2 B.30πcm2 C.60πcm2 D.120cm212.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2二、填空题(每题4分,共24分)13.如图,在△ABC中,点D、E分别在△ABC的两边AB、AC上,且DE∥BC,如果,,,那么线段BC的长是______.14.如图所示的抛物线形拱桥中,当拱顶离水面2m时,水面宽4m.如果以拱顶为原点建立直角坐标系,且横轴平行于水面,那么拱桥线的解析式为_____.15.如图,△ABC是⊙O的内接三角形,∠A=120°,过点C的圆的切线交BO于点P,则∠P的度数为_____.16.如图,在中,,若,则__________.17.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为__________.18.如图,若点A的坐标为(1,),则∠1的度数为_____.三、解答题(共78分)19.(8分)国家计划2035年前实施新能源汽车,某公司为加快新旧动能转换,提高公司经济效益,决定对近期研发出的一种新型能源产品进行降价促销.根据市场调查:这种新型能源产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个新型能源产品的成本为100元.问:(1)设该产品的销售单价为元,每天的利润为元.则_________(用含的代数式表示)(2)这种新型能源产品降价后的销售单价为多少元时,公司每天可获利32000元?20.(8分)如图l,在中,,,于点,是线段上的点(与,不重合),,,连结,,,.(1)求证:;(2)如图2,若将绕点旋转,使边在的内部,延长交于点,交于点.①求证:;②当为等腰直角三角形,且时,请求出的值.21.(8分)小明、小林是景山中学九年级的同班同学,在六月份举行的招生考试中,他俩都被亭湖高级中学录取,并将被编入A、B、C三个班,他俩希望编班时分在不同班.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人不在同班的概率.22.(10分)如图,在10×10正方形网格中,每个小正方形边长均为1个单位.建立坐标系后,△ABC中点C坐标为(0,1).(1)把△ABC绕点C顺时针旋转90°后得到△A1B1C1,画出△A1B1C1,并写出A1坐标.(2)把△ABC以O为位似中心放大,使放大前后对应边长为1:2,画出放大后的△A2B2C2,并写出A2坐标.23.(10分)为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?24.(10分)已知:点和是一次函数与反比例函数图象的连个不同交点,点关于轴的对称点为,直线以及分别与轴交于点和.(1)求反比例函数的表达式;(2)若,求的取值范围.25.(12分)如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,且点E在线段AD上,若AF=4,∠F=60°.(1)指出旋转中心和旋转角度;(2)求DE的长度和∠EBD的度数.26.如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、B【分析】求出△ABC的三边长,再分别求出选项A、B、C、D中各三角形的三边长,根据三组对应边的比相等判定两个三角形相似,由此得到答案.【详解】如图,,AC=2,,A、三边依次为:,,1,∵,∴A选项中的三角形与不相似;B、三边依次为:、、1,∵,∴B选项中的三角形与相似;C、三边依次为:3、、,∵,∴C选项中的三角形与不相似;D、三边依次为:、、2,∵,∴D选项中的三角形与不相似;故选:B.【点睛】此题考查网格中三角形相似的判定,勾股定理,需根据勾股定理分别求每个三角形的边长,判断对应边的比是否相等是解题的关键.2、B【分析】连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.【详解】解:连接CD(如图所示),设小正方形的边长为,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,则.故选B.【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.3、D【分析】根据菱形的性质可求得BO、AO的长,AC⊥BD,根据勾股定理可求出AB,进而可得答案.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,,,AC⊥BD,则在Rt△ABO中,根据勾股定理得:,∴菱形ABCD的周长=4×5=1.故选:D.【点睛】本题考查了菱形的性质和勾股定理,属于基础题目,熟练掌握菱形的性质是解题的关键.4、C【解析】试题分析:A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误.B、当AB=AD,CB=CD时,无法得到四边形ABCD是菱形,故此选项错误.C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形.∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确.D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误.故选C.5、D【分析】根据配方时需在方程的左右两边同时加上一次项系数一半的平方解答即可.【详解】移项,得

x2-4x=-3,配方,得

x2-2x+4=-3+4,即(x-2)2=1

,故选:D.【点睛】本题考查了一元二次方程的解法—配方法,熟练掌握配方时需在方程的左右两边同时加上一次项系数一半的平方是解题的关键.6、C【分析】先设DE=x,然后根据已知条件分别用x表示AF、BF、BE的长,由DE∥AB可知,进而可求出x的值和BE的长.【详解】解:设DE=x,则AF=2x,BF=18﹣2x,∵EF⊥AB,∴∠EFB=90°,∵cosB==,∴BE=(18﹣2x),∵DE∥AB,∴,∴∴x=6,∴BE=(18﹣12)=10,故选:C.【点睛】本题主要考查了三角形的综合应用,根据平行线得到相关线段比例是解题关键.7、B【分析】根据互余角的三角函数间的关系:sin(90°-α)=cosα,cos(90°-α)=sinα解答即可.【详解】解:解:∵在△ABC中,∠C=90°,

∴∠A+∠B=90°,

∴sinA=cosB=,

故选:B.【点睛】本题考查了互余两角的三角函数关系式,掌握当∠A+∠B=90°时,sinA=cosB是解题的关键.8、C【分析】等量关系为:原价×(1-下降率)2=26,把相关数值代入即可.【详解】解:第一次降价后的价格为45(1-x),

第二次降价后的价格为45(1-x)·(1-x)=45(1-x)2,

∴列的方程为45(1-x)2=26,

故选:C.【点睛】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9、B【分析】根据题意直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.【详解】解:设此圆锥的底面半径为r,由题意得:,解得r=2cm,故这个圆锥的高为:.故选:B.【点睛】本题主要考查圆锥的计算,熟练掌握圆锥的性质并正确得出圆锥的半径是解题关键.10、B【分析】根据全等三角形的判定(ASA)即可得到正确;根据相似三角形的判定可得正确;根据全等三角形的性质可得正确;根据相似三角形的性质和判定、勾股定理,即可得到答案.【详解】解:四边形是正方形,,,,,,故正确;,点四点共圆,∴,∴,故正确;,,,故正确;,,又,是等腰直角三角形,,,,,,,,,,又中,,,,故错误,故选.【点睛】本题考查全等三角形的判定(ASA)和性质、相似三角形的性质和判定、勾股定理,解题的关键是掌握全等三角形的判定(ASA)和性质、相似三角形的性质和判定.11、C【详解】解:由勾股定理计算出圆锥的母线长=,圆锥漏斗的侧面积=.故选C.考点:圆锥的计算12、B【详解】∵四边形ABCD是平行四边形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故选B二、填空题(每题4分,共24分)13、;【分析】根据DE∥BC可得,再由相似三角形性质列比例式即可求解.【详解】解:,,,又∵,,,,解得:故答案为:.【点睛】本题主要考查了平行线分线段成比例定理的应用,找准对应线段是解题的关键.14、y=x1【解析】根据题意以拱顶为原点建立直角坐标系,即可求出解析式.【详解】如图:以拱顶为原点建立直角坐标系,由题意得A(1,−1),C(0,−1),设抛物线的解析式为:y=ax1把A(1,−1)代入,得4a=−1,解得a=−,所以抛物线解析式为y=−x1.故答案为:y=−x1.【点睛】本题考查了二次函数的应用,解决本题的关键是根据题意建立平面直角坐标系.15、30°【分析】连接OC、CD,由切线的性质得出∠OCP=90°,由圆内接四边形的性质得出∠ODC=180°−∠A=60°,由等腰三角形的性质得出∠OCD=∠ODC=60°,求出∠DOC=60°,由直角三角形的性质即可得出结果.【详解】如图所示:连接OC、CD,∵PC是⊙O的切线,∴PC⊥OC,∴∠OCP=90°,∵∠A=120°,∴∠ODC=180°−∠A=60°,∵OC=OD,∴∠OCD=∠ODC=60°,∴∠DOC=180°−2×60°=60°,∴∠P=90°−∠DOC=30°;故填:30°.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形内角和定理;熟练掌握切线的性质是解题的关键.16、6【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴△BEG∽△FAG,∵,∴,∴,∵,∴,,∴.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.17、【解析】分析:设勾为2k,则股为3k,弦为k,由此求出大正方形面积和阴影区域面积,由此能求出针尖落在阴影区域的概率.详解:设勾为2k,则股为3k,弦为k,∴大正方形面积S=k×k=13k2,中间小正方形的面积S′=(3−2)k•(3−2)k=k2,故阴影部分的面积为:13k2-k2=12k2∴针尖落在阴影区域的概率为:.故答案为.点睛:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.18、60°.【分析】过点作⊥轴,构造直角三角形之后运用三角函数即可解答。【详解】解:过点作⊥轴,中,,∠,∠=°.【点睛】本题考查在平面直角坐标系中将点坐标转化为线段长度,和运用三角函数求角的度数问题,熟练掌握和运用这些知识点是解答关键.三、解答题(共78分)19、(1)或;(2)当销售单价为180元时,公司每天可获利32000元.【分析】(1)根据总利润=单件利润销量,用的代数式分别表示两个量,构建方程即可;(2)由(1)所得的函数,当时,解一元二次方程即可求得答案.【详解】(1)依题意得:(2)公司每天可获利32000元,即,则,化简得:,解得:,答:当销售单价为180元时,公司每天可获利32000元.【点睛】本题主要考查二次函数的应用、一元二次方程的解法,理解题意找到题目蕴含的相等关系列出方程是解题的关键.20、(1)见解析;(2)①见解析;②【分析】(1)通过证明△EAB≌△FAB,即可得到BE=BF;

(2)①首先证明△AEB≌△AFC,由相似三角形的性质可得:∠EBA=∠FCA,进而可证明△AGC∽△KGB;②根据题意,可分类讨论求值即可.【详解】(1)∵AB=AC,AO⊥BC,

∴∠OAC=∠OAB=45°,

∴∠EAB=∠EAF-∠BAF=45°,

∴∠EAB=∠BAF=45°,

在△EAB和△FAB中,,∴△EAB≌△FAB(SAS),

∴BE=BF;

(2)①∵∠BAC=90°,∠EAF=90°,

∴∠EAB+∠BAF=∠BAF+∠FAC=90°,

∴∠EAB=∠FAC,

在△AEB和△AFC中,,∴△AEB≌△AFC(SAS),

∴∠EBA=∠FCA,

又∵∠KGB=∠AGC,

∴△AGC∽△KGB;

②当∠EBF=90°时,∵EF=BF,

∴∠FEB=∠EBF=90°(不符合题意),当∠BEF=90°,且EF=BF时,∴∠FEB=∠EBF=90°(不符合题意),当∠EFB=90°,且EF=BF时,如下图,∴∠FEB=∠FBE=45°,∵,,∴∠AFE=∠AEF=45°,∴∠AEB=∠AEF+∠FEB=45°+45°=90°,不妨设,则BF=EF=,BE=,在Rt△ABE中,∠AEB=90°,,BE,∴,∴,综上,.【点睛】本题考查了全等三角形的判定和性质、相似三角形的判定和性质、等腰直角三角形的性质,题目的综合性很强,最后一问要注意分类讨论,以防遗漏.21、(1)9种结果,见解析;(2)P=【分析】(1)小明有3种分班情况,小林有3种分班情况,共有9种结果;(2)根据(1)即可列式求出两人不在同班的概率.【详解】(1)树状图如下:所有可能的结果共有9种.(2)两人不在同班的有6种,∴P(两人不在同班)==.【点睛】此题考查求事件的概率,熟记概率的公式,正确代入求值即可.22、(1)见解析,A1(2,3);(2)见解析,A2(4,-6).【分析】(1)根据旋转变换的定义,将三角形的三个顶点分别顺时针旋转90°后得到对应点,顺次连接即可得;(2)根据位似变换的定义得出点的对应点,顺次连接即可得.【详解】解:(1)如下图所示:即为所求,A1坐标为(2,3);(2)如下图所示:即为所求,A2坐标为(4,−6).【点睛】本题考查了旋转作图及图形位似的知识,解答此类题目的关键是就是寻找对应点,要求掌握旋转三要素、位似的特点.23、(1);(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解析】试题分析:(1)根据销售额=销售量×销售价单x,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:,∴w与x的函数关系式为:.(2),∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.24、(1);(2)或.【分析】(1)将点A(-1,-4)代入反比例函数解析式,即可得m的值;(2)分两种情况讨论:当P在第一象限或第三象限时,过点作于点,交x轴于点,,通过相似的性质求出AC的长,然后求出点P的坐标,求出一次函数的解析式,即可求出k的取值范围.【详解】解:(1)将点A(-1,-4)代入反比例函数解析式,即可得m=4,∴反比例函数解析式是;(2)分两种情况讨论:当P在第一象限时,如图1,当时,过点作于点,交x轴于点,∵,∴,,∴,∴AC=6,∴点P的纵坐标是2,把y=2代入中得x=2,∴点P的坐标是(2,2),∴,∴,∴一次函数的解析式为y=2x-2,当时,AC>6,此时点P的纵坐标大于2,k的值变大,所以k>2,∴;当P在第三象限时,如图2,当时,过点作于点,交x轴于点,∵,∴,,∴,∴AC=6,∴点P的纵坐标是-10,把y=-10代入中得x=,∴点P的坐标是(,-10),∴,∴,∴一次函数的解析式为y=-10x-14,当时,AC>6,此时点P的纵坐标小于-10,k的值变小,所以k<-10,∴;综上所述,的取值范围或.【点睛】本题是函数和相似三角形的综合题,难度较大.要紧盯着如何求点P坐标这一突破口,通过相似求出线段的长,从而解决问题.25、(1)90°;(2)15°.【解析】试题分析:(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论