版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.点P的坐标是(2-a,3a+6),且点P到两坐标轴的距离相等,则点P坐标是()A.(3,3) B.(3,-3) C.(6,-6) D.(3,3)或2.以下列各组数据为边长作三角形,其中能组成直角三角形的是().A.3,5,3 B.4,6,8 C.7,24,25 D.6,12,133.a,b是两个连续整数,若a<<b,则a+b的值是()A.7 B.9 C.21 D.254.下列长度的三条线段能组成直角三角形的是A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,125.如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8 B.9 C. D.106.下列运算正确的是()A.a+a=a2 B.a6÷a3=a2 C.(a+b)2=a2+b2 D.(ab3)2=a2b67.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.148.如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=2,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于2,则α=()A.30° B.45° C.60° D.15°9.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④ B.②③④ C.①③④ D.①②③10.关于函数的图像,下列结论正确的是()A.必经过点(1,2) B.与x轴交点的坐标为(0,-4)C.过第一、三、四象限 D.可由函数的图像平移得到11.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10° B.15° C.18° D.30°12.若分式的值为零,则的值为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.14.计算的结果为__________.15.如图在中,,,,分别以为直径作半圆,如图阴影部分面积记为、,则__________.16.如图,四边形ABCD沿直线l对折后互相重合,如果AD∥BC,有下列结论:①AB∥CD②AB=CD③AB⊥BC④AO=OC其中正确的结论是_______________.(把你认为正确的结论的序号都填上)17.近似数2.019精确到百分位的结果是_____.18.直线与平行,则的图象不经过____________象限.三、解答题(共78分)19.(8分)方格纸中的每个小方格都是边长为1个单位的正方形,建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(3,1).(1)画出△ABC关于y轴对称的△A1B1C1(2)将△A1B1C1向下平移3个单位后得到△A2B2C2,画出平移后的△A2B2C2,并写出顶点B2的坐标.20.(8分)某星期天,八(1)班开展社会实践活动,第一小组花90元从蔬菜批发市场批发了黄瓜和茄子共40kg,到蔬菜市场去卖,黄瓜和茄子当天的批发价与零售价如表所示:品名黄瓜茄子批发价/(元/kg)2.42零售价/(元/kg)3.62.8(1)黄瓜和茄子各批发了多少kg?(2)该小组当天卖完这些黄瓜和茄子可赚多少钱?21.(8分)一个四位数,记千位和百位的数字之和为a,十位和个位的数字之和为b,如果a=b,那么称这个四位数为“心平气和数”例如:1625,a=1+6,b=2+5,因为a=b,所以,1625是“心平气和数”.(1)直接写出:最小的“心平气和数”是,最大的“心平气和数”;(2)将一个“心平气和数”的个位与十位的数字交换位置,同时将百位与千位的数字交换,称交换前后的这两个“心平气和数”为一组“相关心平气和数”.例如:1625与6152为一组“相关心平气和数”,求证:任意的一组“相关心平气和数”之和是11的倍数.(3)求千位数字是个位数字的3倍,且百位数字与十位数字之和是14的倍数的所有“心平气和数”.22.(10分)如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,边AB与y轴交于点C.(1)若∠A=∠AOC,试说明:∠B=∠BOC;(2)延长AB交x轴于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度数;(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,∠A=40°,当△ABO绕O点旋转时(边AB与y轴正半轴始终相交于点C),问∠P的度数是否发生改变?若不变,求其度数;若改变,请说明理由.23.(10分)如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立平面直角坐标系:(2)B同学家的坐标是;(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.24.(10分)已知点M(2a﹣b,5+a),N(2b﹣1,﹣a+b).若点M,N关于y轴对称,求(4a+b)2019的值.25.(12分)探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△ABC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数.26.如图,在中,点是上一点,分别过点、两点作于点,于点,点是边上一点,连接,且.求证:.
参考答案一、选择题(每题4分,共48分)1、D【分析】由点P到两坐标轴的距离相等,建立绝对值方程再解方程即可得到答案.【详解】解:点P到两坐标轴的距离相等,或当时,当综上:的坐标为:或故选D.【点睛】本题考查的是平面直角坐标系内点的坐标特点,点到坐标轴的距离与坐标的关系,一元一次方程的解法,掌握以上知识是解题的关键.2、C【解析】试题分析:欲求证是否为直角三角形,这里给出三边的长,只要满足勾股定理的逆定理即可.A、;B、;C、;D、.根据勾股定理7,24,25能组成直角三角形.故选C.考点:勾股定理的逆定理.3、A【分析】先求出的范围,即可得出a、b的值,代入求出即可.【详解】解:∵3<<4,∴a=3,b=4,∴a+b=7,故选:A.【点睛】本题考查了估算无理数的大小的应用,解此题的关键是估算出的范围,难度不是很大.4、A【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选A.【点睛】考查勾股定理的逆定理,如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.5、C【分析】本题根据所给的条件得知,△ABC是直角三角形,再根据三角形的面积相等即可求出BC边上的高.【详解】∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,则由面积公式可知,S△ABC=ABAC=BCAD,∴AD=.故选C.【点睛】本题考查了勾股定理的逆定理,需要先证得三角形为直角三角形,再利用三角形的面积公式求得AD的值.6、D【分析】直接利用合并同类项法则、同底数幂的除法运算法则、幂的乘方运算法则和完全平方公式分别进行计算,再进行判断.【详解】A、a+a=2a,故此选项错误;B、a6÷a3=a6-3=a3,故此选项错误;C、(a+b)2=a2+b2+2ab,故此选项错误;D、(ab3)2=a2b6,故此选项计算正确.故选D.【点睛】考查了幂的乘方运算以及同底数幂的除法运算、合并同类项等知识,正确掌握运算法则是解题关键.7、B【解析】试题分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.8、A【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点E、F在CD上时,△PEF的周长为PE+EF+FP=CD,此时周长最小,根据CD=2可求出α的度数.【详解】如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F.此时,△PEF的周长最小.连接OC,OD,PE,PF.∵点P与点C关于OA对称,∴OA垂直平分PC,∴∠COA=∠AOP,PE=CE,OC=OP,同理,可得∠DOB=∠BOP,PF=DF,OD=OP.∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB=α,OC=OD=OP=2,∴∠COD=2α.又∵△PEF的周长=PE+EF+FP=CE+EF+FD=CD=2,∴OC=OD=CD=2,∴△COD是等边三角形,∴2α=60°,∴α=30°.故选A.【点睛】本题找到点E和F的位置是解题的关键.要使△PEF的周长最小,通常是把三边的和转化为一条线段,运用三角形三边关系解决.9、A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,
∴∠ACD=∠BCE,
∴△ADC≌△BEC(SAS),故①正确,
∴AD=BE,故②正确;
∵△ADC≌△BEC,
∴∠ADC=∠BEC,
∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;
∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,
∴△CDP≌△CEQ(ASA).
∴CP=CQ,
∴∠CPQ=∠CQP=60°,
∴△CPQ是等边三角形,故④正确;
故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.10、C【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】解:A、∵当x=1时,y=2-4=-2≠2,∴图象不经过点(1,2),故本选项错误;
B、点(0,-4)是y轴上的点,故本选项错误;
C、∵k=2>0,b=-4<0,∴图象经过第一、三、四象限,故本选项正确;
D、函数y=-2x的图象平移得到的函数系数不变,故本选项错误.
故选:C.【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,b<0时函数图象经过一、三、四象限是解答此题的关键.11、B【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.12、C【分析】根据分式的值为零的条件:分子=0且分母≠0,即可求出结论.【详解】解:∵分式的值为零,∴解得:x=-3故选C.【点睛】此题考查的是分式的值为零的条件,掌握分式的值为零的条件:分子=0且分母≠0是解决此题的关键.二、填空题(每题4分,共24分)13、.【解析】作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=∴BD=CD′=,故答案为.14、1【分析】根据分式的加减法法则计算即可得答案.【详解】==1.故答案为:1【点睛】本题考查分式的加减,同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母分式,再加减;熟练掌握运算法则是解题关键.15、24【分析】先根据勾股定理得出以为直径的半圆面积+以为直径的半圆面积=以为直径的半圆面积,再根据以为直径的半圆面积+以为直径的半圆面积+以为直径的半圆面积,进而推出即得.【详解】∵在中,,∴∴∴以为直径的半圆面积为:以为直径的半圆面积为:以为直径的半圆面积为:∴以为直径的半圆面积+以为直径的半圆面积=以为直径的半圆面积∵以为直径的半圆面积+以为直径的半圆面积+以为直径的半圆面积∴∴故答案为:.【点睛】本题考查了勾股定理的应用,熟练掌握结论“直角三角形以两直角边为边的相似几何图形面积之和等于斜边上同形状图形面积”是快速解决选择填空题的有效方法.16、①②④【分析】四边形ABCD沿直线l对折后互相重合,即△ABC与△ADC关于L对称,又有AD∥BC,则有四边形ABCD为平行四边形.根据轴对称的性质可知.【详解】解:∵直线l是四边形ABCD的对称轴,AD∥BC;∴△AOD≌△BOC;∴AD=BC=CD,OC=AO,且四边形ABCD为平行四边形.故②④正确;又∵AD四边形ABCD是平行四边形;∴AB∥CD.故①正确.17、2.1【分析】根据四舍五入法可以解答本题.【详解】2.019≈2.1(精确到百分位),故答案为2.1.【点睛】本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的含义.18、四【解析】根据两直线平行的问题得到k=2,然后根据一次函数与系数的关系判定y=2x+1所经过的象限,则可得到y=kx+1不经过的象限.解:∵直线y=kx+1与y=2x-1平行,∴k=2,∴直线y=kx+1的解析式为y=2x+1,∴直线y=2x+1经过第一、二、三象限,∴y=kx+1不经过第四象限.故答案为四.三、解答题(共78分)19、(1)见解析;(2)见解析,B2(-1,-3)【分析】(1)利用关于y轴对称点的性质:纵坐标不变,横坐标互为相反数,得出对应点位置即可得出答案;(2)分别作出点A1、B1、C1向下平移3个单位后的点,然后顺次连接,且B2的坐标即为点B1纵坐标减3即可.【详解】解:(1)如图△A1B1C1,即为所求;(2)如图△A2B2C2,即为所求,B2(-1,-3).【点睛】本题考查了根据轴对称变换和平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,并顺次连接.20、(1)黄瓜批发了25kg,茄子批发了15kg;(2)可赚42元.【分析】(1)设他当天购进黄瓜x千克,茄子y千克,根据黄瓜的批发价是2.4元,茄子批发价是2元,共花了90元,列出方程,求出x的值,即可求出答案;
(2)根据黄瓜和茄子的斤数,再求出每斤黄瓜和茄子赚的钱数,即可求出总的赚的钱数.【详解】(1)设黄瓜批发了xkg,茄子批发了ykg,根据题意,得,解得,答:黄瓜批发了25kg,茄子批发了15kg.(2)(3.6﹣2.4)×25+(2.8﹣2)×15=42(元).答:该小组当天卖完这些黄瓜和茄子可赚42元.【点睛】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.21、(1)1001,1;(2)见解析;(2)2681和4【分析】(1)因为是求最小的“心平气和数”和最大的“心平气和数”,所以一个必须以1开头的四位数,一个是以9开头的四位数,不难得到1001和1这两个答案.(2)可以设千位和百位的数字之和为m,十位和个位的数字之和为m,千位数字为a,十位数字为b,根据题意列出一组“相关心平气和数”之和,利用提取公因式进行因式分解就可以了,即可证明得任意的一组“相关心平气和数”之和是11的倍数.(2)先讨论出千位与个位数字分别为2,6,9和1,2,2,也可以讨论出,百位数字与十位数字之和只能是3,进而得到最后两组符合题意的答案.【详解】解:(1)最小的“心平气和数”必须以1开头,而1000显然不符合题意,所以最小的只能是1001,最大的“心平气和数”必须以9开头,后面的数字要尽可能在0﹣9这九个数字中选最大的,所以最大的“心平气和数”一定是1.故答案为:1001;1.(2)证明:设千位和百位的数字之和为m,十位和个位的数字之和为m,千位数字为a,十位数字为b,所以个位数字为(m﹣b),百位数字为(m﹣a).依题意可得,这组“相关心平气和数”之和为:(m﹣b)+10b+100(m﹣a)+1000a+b+10(m﹣b)+100a+1000(m﹣a),=11(m﹣b)+11b+1100a+1100(m﹣a)=11(m﹣b+b+100a+100m﹣100a)=11×101m,因为m为整数,所以11×101m是11的倍数,所以任意的一组“相关心平气和数”之和是11的倍数.(2)设个位数字为x,则千位数字为2x,显然1≤2x≤9,且x为正整数,故x=1,2,2.又因为百位数字与十位数字之和是3的倍数,而百位数字与十位数字之和最大为18,所以百位数字与十位数字之和只能是3.故可设十位数字为n则百位数字为3﹣n,依题意可得,x+n=3﹣n+2x,整理得,n﹣x=7,故,当x=1时,n=8,当x=2时n=9,当x=2时,n=10(不合题意舍去),综上所述x=1,n=8时“心平气和数”为2681,x=2,n=9时,“心平气和数”为4.所以满足题中条件的所有“心平气和数”为2681和4.【点睛】本题考查整数的有关知识,熟练掌握数的组成、倍数和约数等概念是解题关键.22、⑴证明解析;(2)30°;(3)∠P的度数不变,∠P=25°.【分析】(1)由直角三角形两锐角互余及等角的余角相等即可证明;(2)由直角三角形两锐角互余、等量代换求得∠DOB=∠EOB=∠OAE=∠E;然后根据外角定理知∠DOB+∠EOB+∠OEA=90°;从而求得∠DOB=30°,即∠A=30°;(3)由角平分线的性质知∠FOM=45°-∠AOC①,∠PCO=∠A+∠AOC②,根据①②解得∠PCO+∠FOM=45°+∠A,最后根据三角形内角和定理求得旋转后的∠P的度数.【详解】解⑴∵△AOB是直角三角形∴∠A+∠B=90°,∠AOC+∠BOC=90°∵∠A=∠AOC∴∠B=∠BOC⑵∵∠A+∠ABO=90°,∠DOB+∠ABO=90°∴∠A=∠DOB,即∠DOB=∠EOB=∠OAE=∠OEA∵∠DOB+∠EOB+∠OEA=90°∴∠A=30°⑶∠P的度数不变,∠P=25°∵∠AOM=90°-∠AOC,∠BCO=∠A+∠AOC又OF平分∠AOM,CP平分∠BCO∴∠FOM=45°-∠AOC,∠PCO=∠A+∠AOC∴∠P=180°-(∠PCO+∠FOM+90°)=45°-∠A=25°23、见解析.【分析】(1)由于A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校,则可确定A点位置,然后画出直角坐标系;(2)利用第一象限点的坐标特征写出B点坐标;(3)根据坐标的意义描出点C.【详解】(1)如图;(2)B同学家的坐标是(200,150);(3)如图:故答案为(200,150).【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烟台理工学院《编译原理》2022-2023学年第一学期期末试卷
- 许昌学院《心理学专业导论与创业基础》2021-2022学年第一学期期末试卷
- 徐州工程学院《英语视听》2022-2023学年第一学期期末试卷
- 徐州工程学院《软件工程》2023-2024学年第一学期期末试卷
- 成本优化与资源配置培训
- 课堂探究式学习实施方案计划
- 营造良好工作氛围的策略计划
- 锑矿投资合同三篇
- 提升工作效率的关键举措计划
- 国际理解教育实践方案计划
- 2024年公务员(国考)之行政职业能力测验真题含完整答案(典优)
- 药剂学智慧树知到期末考试答案章节答案2024年齐鲁医药学院
- 2024年社区工作者考试必背1000题题库【含答案】
- 职业能力养成智慧树知到期末考试答案章节答案2024年潍坊职业学院
- 《水利水电建设工程验收规程》-SL223-2008
- MOOC 遥感原理-电子科技大学 中国大学慕课答案
- 数学故事-(小熊卖鱼)
- MOOC 电工学-西北工业大学 中国大学慕课答案
- 科学认识气候变化智慧树知到期末考试答案2024年
- (完整版)口腔护理四手操作技术
- 弱视斜视康复知识讲座
评论
0/150
提交评论