理论力学复习总结知识点_第1页
理论力学复习总结知识点_第2页
理论力学复习总结知识点_第3页
理论力学复习总结知识点_第4页
理论力学复习总结知识点_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第篇静力学

第1章静力学公理与物体的受力分析

1.1静力学公理

公理1二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充

分条件是:这两个力大小相等、方向相反且作用于同一直线上。F=-『

工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。

公理2加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡

力系,不改变原力系对刚体的效应。

推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内

任意一点,而不改变该力对刚体的作用。

公理3力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于

同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。

推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的

作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。

公理4作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小

相等、方向相反,沿着同一直线,分别作用在两个物体上。

公理5钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其

平衡状态保持不变。对处于平衡状态的变形体,总可以把它视为刚体来研究。

1.2约束及其约束力

1.柔性体约束

2.光滑接触面约束

3.光滑钱链约束

第2章平面汇交力系与平面力偶系

1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其

大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即

FR=F1+F2+….+Fn=EF

2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数

和。

3.力对刚体的作用效应分为移动和转动。力对刚体的移动效应用力失来度量;力对

刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱

程度的物理量。(Mo(F)=±Fh)

4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的

力系称为力偶,记为(F,F')。

例2-8

如图2.T7(a)所示的结构中,各构件自重忽略不计,在构件AB上作用一力偶,其

力偶矩为500kN?m,求A、C两点的约束力。

解构件BC只在B、C两点受力,处于平衡状态,因此BC是二力杆,其受力如图2T7

(b)所示。

由于构件AB上有矩为M的力偶,故构件AB在较链A、B处的一对作用力FA、FB'

构成一力偶与矩为M的力偶平衡(见图2-17(c))o由平面力偶系的平衡方程EMi=0,

-Fad+M=0

则有FA=FB'=——50°N=471.40N

万+0.52-(牛)2

由于FA、FB,为正值,可知二力的实际方向正为图2T7(c)所示的方向。

根据作用力与反作用力的关系,可知FC=FB'=471.40N,方向如图2-17(b)所示。

第3章平面任意力系

1.合力矩定理:若平面任意力系可合成为一合力。则其合力对于作用面内任意一点

之矩等于力系中各力对于同一点之矩的代数和。

2.平面任意力系平衡的充分和必要条件为:力系的主失和对于面内任意一点Q的主

矩同时为零,即FR'=O,Mo=0.

3.平面任意力系的平衡方程:£Fx=0,£Fy=O,EMo(F)=0.平面任意力系平衡的解

析条件是,力系中所有力在作用面内任意两个直角坐标轴上投影的代数和分别等

于零,各力对于作用面内任一点之矩的代数和也是等于零.

例3-1

如图3-8(a)所示,在长方形平板的四个角点上分别作用着四个力,其中Fl=4kN,

F2=2kN,F3=F4=3kN,平板上还作用着一力偶矩为M=2kN•m的力偶。试求以上四个力

及一力偶构成的力系向0点简化的结果,以及该力系的最后合成结果。

解(1)求主矢FR',建立如图3-8(a)所示的坐标系,有

F'Rx=£Fx=-F2cos60°+F3+F4cos30°=4.598kN

F'Ry=LFy=Fl-F2sin60°+F4sin30°=3.768kN

所以,主矢为

F,R=,F'Rx2+F'Ry2=5.945kN

主矢的方向

cos(F'R,i)=-=0.773,Z(F,R,i)=39.3°

F'R

cos(F'R,j)=—=0.634,Z(F'R,j)=50.7°

F'R

(2)求主矩,有

M0=EM0(F)=M+2F2cos60°-2F2+3F4sin30°=2.5kN-m

由于主矢和主矩都不为零,故最后的合成结果是一个合力FR,如图3-8(b)所

示,FR=F'R,合力FR到0点的距离为

d=—=0.421m

F'R

例3-10

连续梁由AC和CE两部分在C点用较链连接而成,梁受载荷及约束情况如图3-18(a)

所示,其中M=10kN・m,F=30kN,q=10kN/m,l=lm。求固定端A和支座D的约束力。

解先以整体为研究对象,其受力如图3-18(a)所示。其上除受主动力外,还受固定

端A处的约束力Fax、Fay和矩为MA的约束力偶,支座D处的约束力FD作用。列平

衡方程有

EFx=O,Fax-Fcos45°=0

EFy=O,FAy-2ql+Fsin45°+FD=O

EMA(F)=0,MA+M-4ql2+3FDl+4Flsin45°=0

以上三个方程中包含四个未知量,需补充方程。现选CE为研究对象,其受力如图3-

(b)所示。以C点为矩心,列力矩平衡方程有

EMC(F)=0,-1ql2+FDl+2Flsin45°=0联立求解得

FAx=21.21kN,Fay=36.21kN,MA=57.43kN•m,FD=-37.43kN

第4章考虑摩擦的平衡问题

1.摩擦角:物体处于临界平衡状态时,全约束力和法线间的夹角。tanitm=fs

2.自锁现象:当主动力即合力Fa的方向、大小改变时,只要Fa的作用线在摩擦角

内,C点总是在B点右侧,物体总是保持平衡,这种平衡现象称为摩擦自锁。

例4-3

梯子AB靠在墙上,其重为W=200N,如图4-7所示。梯长为I,梯子与水平面的夹角

为0=60°已知接触面间的摩擦因数为0.25。今有一重650N的人沿梯上爬,问人所

能达到的最高点C到A点的距离s为多少?

解整体受力如图4-7所示,设C点为人所能达到的极限位置,此时

FsA=fsFNA,FsB=fsFNB

EFx=0,FNB-FsA=0

EFy=0,FNA+FsB-W-Wl=0

EMA(F)=0,-FNBsin0-FsBlcos0+W-cos0+Wlscos0=0

2

联立求解得S=0.456l

第5章空间力系

1.空间汇交力系平衡的必要与充分条件是:该力系的合力等于零,即FR=EFi=0

2.空间汇交力系平衡的解析条件是:力系中各力在三条坐标轴上投影的代数和分别

等于零.

3.要使刚体平衡,则主失和主矩均要为零,即空间任意力系平衡的必要和充分条件是:

该力系的主失和对于任一点的主矩都等于零,即FJ=EFi=0,Mo=£Mo(Fi)=0

4.均质物体的重力位置完全取决于物体的几何形状,而与物体的重量无关.若物体是

均质薄板,略去Zc,坐标为xc=ZAi*xi/A,yc=EAi*yi/A

5.确定物体重心的方法

(1)查表法

(2)组合法:①分割法:②负面积(体积)法

(3)实验法

例5-7

试求图5-21所示截面重心的位置。

解将截面看成由三部分组成:半径为10mm的半圆、50mmX20mm的矩形、半径为5nlm

的圆,最后一部分是去掉的部分,其面积应为负值。取坐标系Oxy,x轴为对称轴,

则截面重心C必在x轴上,所以yc=0.这三部分的面积和重心坐标分别为

A1=TIX1O2mm2=157mm2,xl=~—=-4.246mm,y1=0

23n

A2=50X20mm2=1000mm2,x2=25mm,y2=0

A3二-冗X52mm2=-78.5mm2,x3=40mm,y3=0

用负面积法,可求得

Xc_Alxl+A2x2+A3x3_157x(-4.246)+1000x25+(-78.5)X40

A1+A2+A3157+1000+(-78.5)

第二篇运动学

第6章点的运动学

6.2直角坐标法

运动方程x=f(t)y=g(t)z=h(t)消去t可得到轨迹方程f(x,y,z)=0其

例题6-1椭圆规机构如图6-4(a)所示,曲柄oc以等角速度w绕0转动,通过连

杆AB带动滑块A、B在水平和竖直槽内运动,OC=BC=AC=L。求:(1)连杆上M点(AM=r)

的运动方程;(2)M点的速度与加速度。

解:(1)列写点的运动方程

由于M点在平面内运动轨迹未知,故建立坐标系。点M是BA杆上的一点,该杆

两端分别被限制在水平和竖直方向运动。曲柄做等角速转动,g=wto由这些约束条

件写出M点运动方程x=(2L-r)coswty=rsinwt消去t得轨迹方程:(x/2L-r)2+

(y/x)2-1

(2)求速度和加速度

对运动方程求导,得dx/dt=-(2L-r)wsinwtdy/dt=rsinwt再求导

al=-(2L-r)w2coswta2=-rw2sinwt由式子可知a=ali+a2j=-w2r

6.3自然法

2.自然坐标系:b=tXn其中b为副法线n为主法线t

3•点的速度v=ds/dt切向加速度at=dv/dt法向加速度an=v2/p

习题6-10滑道连杆机构如图所示,曲柄0A长r,按规律0=©'+wt转动(0

以rad计,t以s计),w为一常量。求滑道上C点运动、速度及加速度方程。

解:

第七章刚体的基本运动

7.1刚体的平行运动:刚体平移时,其内所有各点的轨迹的形状相同。在同一瞬

时,所有各点具有相同的速度和相同的加速度。刚体的平移问题可归结为点的运动问

题。

7.2刚体的定轴转动:瞬时角速度w=limA9/At=d9/dt

瞬时角加速度a=limAw/At=dw/dt=d29/dt2

转动刚体内任一点速度的代数值等于该点至转轴的距离与刚体角速度的乘积

a-V(a2+b2)=RJ(a2+w2)9=arctana|/b=arctan|a|/w2

转动刚体内任一点速度和加速度的大小都与该点至转轴的距离成正比。

例题7-1如图所示平行四连杆机构中,01A=02B=0.2m,0102=AB=0.6m,AM=0.2m,

如01A按6=15nt的规律转动,其中小以rad计,t以s计。试求t=0.8s时,M点

的速度与加速度。

解:在运动过程中,杆AB始终与0102平行。因此,杆AB为平移,01A为定轴转

动。根据平移的特点,在同一瞬时M、A两点具有相同的速度和加速度。A点做圆周

运动,它的运动规律为s=01A•<1)=3Jitm

所以VA=ds/dt=3Jim/satA=dv/dt=0anA=(VA)2/01A=45m/s

为了表示Vw、am的2,需确定t=0.8s时,AB杆的瞬时位置。当t=0.8s时,s=2.4

nm

01A=0.2m,6=2.4n/0.2=12”,AB杆正好第6次回到起始位置0点处,Vm、am的方

向如图所示。

第8章点的合成运动

8.1合成运动的概念:相对于某一参考系的运动可由相对于其他参考系的几个运

动组合而成,这种运动称为合成运动。

当研究的问题涉及两个参考系时,通常把固定在地球上的参考系称为定参考系,

简称定系。吧相对于定系运动的参考系称为动参考系,简称动系。研究的对象是动点。

动点相对于定参考系的运动称为绝对运动;动点相对于动参考系的运动称为相对运

动;动参考系相对于定参考系的运动称为牵连运动。动系作为一个整体运动着,因此,

牵连运动具体有刚体运动的特点,常见的牵连运动形式即为平移或定轴转动。

动点的绝对运动是相对运动和牵连运动合成的结果。绝对运动也可分解为相对运

动和牵连运动。在研究比较复杂的运动时,如果适当地选取动参考系,往往能把比较

复杂的运动分解为两个比较简单的运动。这种研究方法无论在理论上或实践中都具有

重要意义。

动点在相对运动中的速度、加速度称为动点的相对速度、相对加速度,分别用

Vr和ar表示。动点在绝对运动中的速度、加速度称为动点的绝对速度和绝对加速度,

分别用Va和aa表示。换句话说,观察者在定系中观察到的动点的速度和加速度分别

为绝对速度和绝对加速度;在动系中观察到动点的速度和加速度分别为相对速度和相

对加速度。

在某一瞬时,动参考系上与动点M相重合的一点称为此瞬时动点M的牵连点。如

在某瞬时动点没有相对运动,则动点将沿着牵连点的轨迹而运动。牵连点是动系上的

点,动点运动到动系上的哪一点,该点就是动点的牵连点。定义某瞬时牵连点相对于

定参考系的速度、加速度称为动点的牵连速度、牵连加速度,分别用Ve和ae表示。

动系0,X,y,与定系Oxy之间的坐标系变换关系为

x=xo+x'cos9sin9y=y°+x,sin9+y,cos9

在点的绝对运动方程中消去时间t,即得点的绝对运动轨迹;在点的相对运动方程中

消去时间t,即得点的相对运动轨迹。

例题8-4矿砂从传送带A落到另一传送带B上,如图所示。站在地面上观察矿砂

下落的速度为v,=4m/s,方向与竖直线成30角。已知传送带B水平传动速度v2=3m/s.

求矿砂相对于传送带B的速度。

解:以矿砂M为动点,动系固定在传送带B上。矿砂相对地面的速度vi为绝对速

度;牵连速度应为动参考系上与动点相重合的哪一点的速度。可设想动参考系为无限

大,由于它做平移,各点速度都等于vz。于是也等于动点M的牵连速度。

由速度合成定理知,三种速度形成平行四边形,绝对速度必须是对角线,因此作

出的速度平行四边形如图所示。根据几何关系求得

Vr=V(Ve2+Va2-2VeVaCOS60o)=3.6m/s

Ve与Va间的夹角P=arcsin(Ve/vr*sin60o)=46ol2"

总结以上,在分析三种运动时,首先要选取动点和动参考系。动点相对于动系是运动

的,因此它们不能处于同一物体;为便于确定相对速度,动点的相对轨迹应简单清楚。

8.3当牵连运动为平移时,动点的绝对加速度等于牵连加速度和相对加速度的矢

量和。

第9章刚体的平面运动

9.1刚体平面运动的分析:其运动方程x=f“t)y=f2(t)0=f3(t)完全确定平

面运动刚体的运动规律

在刚体上,可以选取平面图形上的任意点为基点而将平面运动分解为平移和转

动,其中平面图形平移的速度和加速度与基点的选择有关,而平面图形绕基点转动的

角速度和角加速度与基点的选择无关。

9.2刚体平面运动的速度分析:

平面图形在某一瞬时,其上任意两点的速度在这两点的连线上的投影相等,这就

是速度投影定理。Vcosa=vcosb

例9-1

椭圆规尺AB由曲柄0C带动,曲柄以匀角速度3。绕轴0转动,如图9-7所示,

0C=BC=AC=r,求图示位置时,滑块A、B的速度和椭圆规尺AB的角速度。

解已知0C绕轴0做定轴转动,椭圆规尺AB做平面运动,vc=30r。

(1)用基点法求滑块A的速度和AB的角速度。因为C的速度已知,选C为基点。

vA=Vc+VAC

式中的vc的大小和方向是已知的,vA的方向沿y轴,vAC的方向垂直于AC,可以作

出速度矢量图,如图9-7所示。

由图形的几何关系可得

vA=2vccos30°=63Or,Vac=Vc,Vac=wABr

解得

3AB=30(顺时针)

(2)用速度投影定理求滑块B的速度,B的速度方向如图9-7所示。

[vB]BC=[vC]BC

Vccos30°=vBcos30°

解得

Vb=vC=3Or

例9-5

图9T5所示机构中,长为1的杆AB的两端分别与滑块A和圆盘B沿竖直方向光滑移

动,半径为R的圆盘B沿水平直线做纯滚动。已知在图示的位置时,滑块A的速度为

vA,求该瞬时杆B端的速度、杆AB的角速度、杆AB中点D的速度和圆盘的角速度。

解根据题意,杆AB做平面运动,vA的方向已知,圆盘中心B的速度沿水平方向,

则杆AB的速度瞬心为P点,有

3A.B「=—vA=--vA-

APIcos0

vB=wAB•BP=vAtan0

1vA

vD=3AB,DP=—•一二-----------

Icos022cos0

圆盘B做平面运动,C点为其速度瞬心,则aBM赘u赘tan。

第三篇动力学

第10章质点动力学的基本方程

1.牛顿第一定律:不受了作用(包括受到平衡力系作用)的质点,将保持静止或做

匀速直线运动。又称惯性定律。

2.牛顿第二定律:质点的质量与加速度的乘积,等于作用于质点的力的大小,加速

度的方向与力的方向相同。F=ma

3.牛顿第三定律:两个物体间的作用力与反作用力总是大小相等、方向相反,沿着

同一直线,同时分别作用在这两个物体上。

例10-2:曲柄连杆机构如图10-2(a)。曲柄0A以匀角速度3转动,0A=r,AB=1,

当入=r/l比较小时,以0为坐标原点,滑块B的运动方程可近似表示为

X2X

X=1(1)+r(cos3tn-cos231)

44

如滑块的质量为m,忽略摩擦及连杆AB的质量,试求当3=3t=0和E时,连杆AB所

2

受的力。

解以滑块B为研究对象,当3=时,其受力如图10-2(b)所示。由于连

杆不计质量,AB应为二力杆,所以受平衡力系作用,它对滑块B的拉力F沿AB方向。

滑块嘿x轴的运动方程

Max二一FeosB

由滑块B的运动方程可得

d2x

Ax=—=-rw2(cos31+入cos231)

dt2

当3t=0时,ax=-rw2(1+入),且B=0,得

F=mr32(1+入)

杆AB受拉力。

同理可得,当时,F=-噤空,杆AB受压力

2V12-r2

例10-5

物块在光滑水平面上并与弹簧相连,如图10-5所示。物块的质量为m,弹簧的刚度

系数为k。在弹簧拉长变形量为a时,释放物块。求物块的运动规律。

解以弹簧未变形处为坐标原点0,设物块在任意坐标x处弹簧变形量为lx|,弹簧力

大小为F=k|x|,并指向0点,如图10-5所示,则此物块沿x轴的运动微分方程为

m—=Fx=-kx

dt2

令32n=±将上式化为自由振动微分方程的标准形式手+a2nx=0

mdt2

上式的解可写为X=Acos(3nt+6)

其中A、0为任意常数,应由运动的初始条件决定。由题意,当t=0时,¥=0,x=a,

at

代入上式,解得0=0,A=a,代入式中,可解得运动方程为X=acos3nt

第11章动力定理p=mvc

1.动量:等于质点的质量与其速度的乘积.

2.质点系的动量定理:

①微分形式:质点系的动量对时间的一阶导数等于作用在该质点系上所有外力的矢

量和.

②积分形式:质点系的动量在任一时间间隔内的变化,等于在同一时间间隔内作用在

该指点系上所有外力的冲凉的矢量和.(冲凉定理)

3.质心运动守恒定律:如果所有作用于质心系的外力在x轴上投影的代数和恒等于

零,即£F=0,则Vcx=常量,这表明质心的横坐标xc不变或质心沿x轴的运动时

均匀的。

例11-5:已知液体在直角弯管ABCD中做稳定流动,流量为Q,密度为P,AB端

流入截面的直径为d,另一端CD流出截面的直径为dl。求液体对管壁的附加动压力。

解取ABCD一段液体为研究对象,设流出、流入的速度大小为vl和v2,则

71d2nd:

建立坐标系,则附加动反力在X、y轴上的投影为b'Nx=pQ(v2-0)=符

『'Ny=pQ[0-(-vl)]

nd:

例11-7:图11-6所示的曲柄滑块机构中,设曲柄0A受力偶作用以匀角速度w转

动,滑块B沿x轴滑动。若0A=AB=L,0A及AB都为均质杆,质量都为ml,滑块B的

质量为m2。试求此系统的质心运动方程、轨迹及此系统的动量。

解设t=0时杆0A水平,则有=wt。将系统看成是由三个质点组成的,分别位

于杆0A的中点、杆AB的中点和B点。系统质心的坐标为

Jc31cC,

、,ml-+m2-+2m212(ml+m2),

Xc=------------COS3t=--------Icos3t

2ml+m22ml+m2

2ml-ml

Yc=-----sincot=-------1sin3t

2ml+m22ml+m2

上式即系统质心C的运动方程。由上两式消去时间t,得

「2ml+m2小「2ml+m2<

[-7------xc]2+[-----yc]2=1

2(ml+m2)lmil,

即质心C的运功轨迹为一椭圆,如图11-6中虚线所示。应指出,系统的动量,利用

式(11T5)的投影式,有

Px=mvcx=(2ml+m2)—dxc=-2(ml+m2)13sin3t

dt

Py=mvcy=(2ml+m2)^-=ml1cocoscot

dt

例11-11:平板D放置在光滑水平面上,板上装有一曲柄、滑杆、套筒机构,十

字套筒C保证滑杆AB为平移,如图示。已知曲柄0A是一长为r,质量为m的均质杆,

以匀角速度w绕轴0转动。滑杆AB的质量为4m,套筒C的质量为2m,机构其余部分

的质量为20m,设初始时机构静止,试求平板D的水平运动规律x(t)。

解去整体为质点系,说受的外力有各部分的重力和水平面的反力。因为外力

在水平轴上的投影为零,且初始时静止,因此质点系质心在水平轴上的坐标保持不变。

建立坐标系,并设平板D的质心距。点的水平距离为a,AB长为1,C距0点的水平

距离为b,则初始时质点系质心的水平轴的坐标为

20ma+m』+4m(r+))+2mb20a+^+4r+21+2b

Xc1=-------------------=------------

20m+m+4m+2m27

设经过时间t,平板D向右移动了x(t),曲柄0A转动了角度wt,此时质点系质心坐

标为

20m[x(t)+a]+m[x(t)+|cost]+4m[x(t)+rcos<>>t+1]+2m[x(t)+b]

Xc2-

27m

因为在水平方向上质心守恒,所以xcl=xc2,解得:X(t)=-(l-cos<ot)

6

P207习题11-3

第12章动量矩定理

1.质点和质点系的动量矩:

⑴指点对点0的动量矩失在z轴的投影,等于对z轴的动量矩,即「Lo(mv)」=Lz(mv)

⑵质点系对固定点0的动量矩等于各质点对同一点0的动量矩的矢量和.即:Lo=E

Lo(mv)

2.绕定轴转动刚体对于转轴的动量矩等于刚体对转轴的装动惯量与角速度的乘

积.(Lz=wjz)

3.平行轴定理:刚体对于任一轴的转动惯量,等于刚体对通过质心并与该轴平行的轴

转动惯量,加上刚体的质量与两轴间距离平方的乘积.

4.动量矩定理:质点对某定点的动量矩对时间的一阶导数等于作用于质点的力对同

一点的矩.

例12-2:已知均质细杆和均质圆盘的质量都为m,圆盘半径为R,杆长3R,求摆

对通过悬挂点0并垂直于图面的Z轴的转动惯量。

解摆对Z轴的转动惯量为

Jz=Jz杆+Jz盘

杆对Z轴的转动惯量为

11

Jz杆=—ml2=-m(3R)2=3mR2

33

圆盘对其质心的转动惯量为

1

Jzc2=-mR2

2

利用平行轴定理

133

Jz盘二Jzc2+m(R+12)=-mR2+16mR2=—mR2

22

所以

ooon

Jz=Jz杆+Jz盘=3mR2+—mR2=—mR2

22

例12-3:质量为Ml的塔伦可绕垂直于图面的轴0转动,绕在塔轮上的绳索于塔

轮间无相对滑动,绕在半径为r的轮盘上的绳索于刚度系数为k的弹簧相连接,弹簧

的另一端固定在墙壁上,绕在半径为R的轮盘上的绳索的另一端竖直悬挂质量为M2

的重物。若塔轮的质心位于轮盘中心0,它对轴。的转动惯量Jo=2mr,R=2r,Ml=m,M2=2m.

求弹簧被拉长s时,重物M2的加速度。

解塔轮做定轴转动,设该瞬时角速度为w,重物作平移运动,则它的速度为

v=Rw,它们对。点的动量矩分别为Lol,Lo2,大小为

Lol=-Jo,w=-2mr23,Lo2=-2mR2w=-8mr232

系统对0点的外力矩为

MO(Fi(e))=F,r-m2g,R=ksr-4mgr

根据动量矩定理1LO=2MO(Fi(e))

dt

得10mr2—=(4mg-ks)r

Q-_-d-o)-_-4-m-g--k-s

dtlOmr

因重物的加速度a2=Ra,所以:a2=Ra=年士

5m

第13章动能定理

1.质点系动能的微分,等于作用在质点系上所有力所做元功的和,这就是质点系微分

形式的动能定理.(13-23)

2.质点系积分形式的动能定理:质点系在某一运动过程中动能的改变量,等于作用在

质点系上所有力在这一过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论