版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在菱形中,,,,则的值是()A. B.2 C. D.2.如图,在中,,,为边上的一点,且.若的面积为,则的面积为()A. B. C. D.3.设抛物线的顶点为M,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1()A. B.C. D.(a为任意常数)4.在Rt△ABC中,cosA=,那么sinA的值是()A. B. C. D.5.如图,点是上的点,,则是()
A. B. C. D.6.某鱼塘里养了100条鲤鱼、若干条草鱼和50条罗非鱼,通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右,可估计该鱼塘中草鱼的数量为()A.150 B.100 C.50 D.2007.如图,AB是半圆O的直径,∠BAC=40°,则∠D的度数是()A.140° B.130° C.120° D.110°8.已知是关于的一个完全平方式,则的值是().A.6 B. C.12 D.9.如图所示,⊙的半径为13,弦的长度是24,,垂足为,则A.5 B.7 C.9 D.1110.已知Rt△ABC中,∠C=90º,AC=4,BC=6,那么下列各式中,正确的是()A.sinA= B.cosA= C.tanA= D.tanB=二、填空题(每小题3分,共24分)11.如图是抛物线图象的一部分,抛物线的顶点坐标为,与轴的一个交点为,点和点均在直线上.①;②;③抛物线与轴的另一个交点时;④方程有两个不相等的实数根;⑤;⑥不等式的解集为.上述六个结论中,其中正确的结论是_____________.(填写序号即可)12.某校九年级学生参加体育测试,其中10人的引体向上成绩如下表:完成引体向上的个数78910人数1234这10人完成引体向上个数的中位数是___________13.如图,一副含和角的三角板和拼合在一个平面上,边与重合,.当点从点出发沿方向滑动时,点同时从点出发沿射线方向滑动.当点从点滑动到点时,点运动的路径长为______.14.如图,点P是反比例函数y=(k≠0)的图象上任意一点,过点P作PM⊥x轴,垂足为M.若△POM的面积等于2,则k的值等于_15.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为__________.16.在一个不透明的袋子中有5个除颜色外完全相同的小球,其中绿球个,红球个,摸出一个球不放回,混合均匀后再摸出一个球,两次都摸到红球的概率是________.17.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发,以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动,在运动期间,当四边形PQBC为平行四边形时,运动时间为__________秒.18.已知m为一元二次方程x²-3x-2020=0的一个根,则代数式2m²-6m+2的值为___________三、解答题(共66分)19.(10分)万州三中初中数学组深知人生最具好奇心和幻想力、创造力的时期是中学时代,经研究,为我校每一个初中生推荐一本中学生素质数育必读书《数学的奥秘》,这本书就是专门为好奇的中学生准备的.这本书不但给于我们知识,解答生活中的疑惑,更重要的是培养我们细致观察、认真思考、勤于动手的能力.经过一学期的阅读和学习,为了了解学生阅读效果,我们从初一、初二的学生中随机各选20名,对《数学的奥秘》此书阅读效果做测试(此次测试满分:100分).通过测试,我们收集到20名学生得分的数据如下:初一96100899562759386869395958894956892807890初二10098969594929292929286848382787874646092通过整理,两组数据的平均数、中位数、众数和方差如表:年级平均数中位数众数方差初一87.591m96.15初二86.2n92113.06某同学将初一学生得分按分数段(,,,),绘制成频数分布直方图,初二同学得分绘制成扇形统计图,如图(均不完整),初一学生得分频数分布直方图初二学生得分扇形统计图(注:x表示学生分数)请完成下列问题:(1)初一学生得分的众数________;初二学生得分的中位数________;(2)补全频数分布直方图;扇形统计图中,所对用的圆心角为________度;(3)经过分析________学生得分相对稳定(填“初一”或“初二”);(4)你认为哪个年级阅读效果更好,请说明理由.20.(6分)习总书记指出“垃圾分类工作就是新时尚”.某小区为响应垃圾分类处理,改善生态环境,将生活垃圾分成三类:厨余垃圾、可回收垃圾和其他垃圾,分别记为a,b,c,并且设置了相应的垃圾箱:“厨余垃圾”箱、“可回收垃圾”箱和“其他垃圾”箱,分别记为A,B,C.(1)若小明将一袋分好类的生活垃圾随机投入一类垃圾箱,画树状图求垃圾投放正确的概率;(2)为了了解居民生活垃圾分类投放的情况,现随机抽取了小区某天三类垃圾箱中总共10吨的生活垃圾,数据统计如下(单位:吨):ABCa30.81.2b0.262.440.3c0.320.281.4该小区所在的城市每天大约产生500吨生活垃圾,根据以上信息,试估算该城市生活垃圾中的“厨余垃圾”每月(按30天)有多少吨没有按要求投放.21.(6分)杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体看成一点的路线是抛物线的一部分,如图所示.求演员弹跳离地面的最大高度;已知人梯高米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.22.(8分)如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=时,两点停止运动;(2)设△BPQ的面积面积为S(平方单位)①求S与t之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?23.(8分)如图,某校数学兴趣小组为测量该校旗杆及笃志楼的高度,先在操场的处用测角仪测得旗杆顶端的仰角为,此时笃志楼顶端恰好在视线上,再向前走到达处,用该测角仪又测得笃志楼顶端的仰视角为.已知测角仪高度为,点、、在同一水平线上.(1)求旗杆的高度;(2)求笃志楼的高度(精确到).(参考数据:,)24.(8分)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角为,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角为,点A、B、C三点在同一水平线上.(1)求古树BH的高;(2)求教学楼CG的高.25.(10分)如图,为测量小岛A到公路BD的距离,先在点B处测得∠ABD=37°,再沿BD方向前进150m到达点C,测得∠ACD=45°,求小岛A到公路BD的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)26.(10分)中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据上图填写下表:平均数中位数众数方差甲班8.58.5乙班8.5101.6(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的成绩较好.
参考答案一、选择题(每小题3分,共30分)1、B【分析】由菱形的性质得AD=AB,由,求出AD的长度,利用勾股定理求出DE,即可求出的值.【详解】解:在菱形中,有AD=AB,∵,AE=ADAD3,∴,∴,∴,∴,∴;故选:B.【点睛】本题考查了三角函数,菱形的性质,以及勾股定理,解题的关键是根据三角函数值正确求出菱形的边长,然后进行计算即可.2、C【分析】根据相似三角形的判定定理得到,再由相似三角形的性质得到答案.【详解】∵,,∴,∴,即,解得,的面积为,∴的面积为:,故选C.【点睛】本题考查相似三角形的判定定理和性质,解题的关键是熟练掌握相似三角形的判定定理和性质.3、D【分析】求出各选项中M、N两点的坐标,再求面积S,进行判断即可;【详解】A选项中,M点坐标为(1,1),N点坐标为(0,-2),,故A选项不满足;B选项中,M点坐标为,N点坐标为(0,),,故B选项不满足;C选项中,M点坐标为(2,),点N坐标为(0,1),,故选项C不满足;D选项中,M点坐标为(,),点N坐标为(0,2),,当a=1时,S=1,故选项D满足;【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.4、B【分析】利用同角三角函数间的基本关系求出sinA的值即可.【详解】:∵Rt△ABC中,cosA=,
∴sinA==,
故选B.【点睛】本题考查了同角三角函数的关系,以及特殊角的三角函数值,熟练掌握同角三角函数的关系是解题的关键.5、A【分析】本题利用弧的度数等于所对的圆周角度数的2倍求解优弧度数,继而求解劣弧度数,最后根据弧的度数等于圆心角的度数求解本题.【详解】如下图所示:∵∠BDC=120°,∴优弧的度数为240°,∴劣弧度数为120°.∵劣弧所对的圆心角为∠BOC,∴∠BOC=120°.故选:A.【点睛】本题考查圆的相关概念,解题关键在于清楚圆心角、圆周角、弧各个概念之间的关系.6、A【分析】根据大量重复试验中的频率估计出概率,利用概率公式求得草鱼的数量即可.【详解】∵通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右,∴捕捞到草鱼的概率约为0.5,设有草鱼x条,根据题意得:=0.5,解得:x=150,故选:A.【点睛】本题考查用样本估计总体,解题的关键是明确题意,由草鱼出现的频率可以计算出鱼的数量.7、B【分析】根据圆周角定理求出∠ACB,根据三角形内角和定理求出∠B,求出∠D+∠B=180°,再代入求出即可.【详解】∵AB是半圆O的直径,∴∠ACB=90°,∵∠BAC=40°,∴∠B=180°﹣∠ACB﹣∠BAC=50°,∵A、B、C、D四点共圆,∴∠D+∠B=180°,∴∠D=130°,故选:B.【点睛】此题主要考查圆周角定理以及圆内接四边形的性质,熟练掌握,即可解题.8、B【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍,故m=±1.【详解】∵(x±3)2=x2±1x+32,∴是关于的一个完全平方式,则m=±1.故选:B.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.9、A【详解】试题分析:已知⊙O的半径为13,弦AB的长度是24,,垂足为N,由垂径定理可得AN=BN=12,再由勾股定理可得ON=5,故答案选A.考点:垂径定理;勾股定理.10、D【分析】本题可以利用锐角三角函数的定义以及勾股定理分别求解,再进行判断即可.【详解】∵∠C=90°,BC=6,AC=4,∴AB=,A、sinA=,故此选项错误;B、cosA=,故此选项错误;C、tanA=,故此选项错误;D、tanB=,故此选项正确.故选:D.
【点睛】此题主要考查了锐角三角函数的定义以及勾股定理,熟练应用锐角三角函数的定义是解决问题的关键.二、填空题(每小题3分,共24分)11、①④【分析】①由对称轴x=1判断;②根据图象确定a、b、c的符号;③根据对称轴以及B点坐标,通过对称性得出结果;③根据的判别式的符号确定;④比较x=1时得出y1的值与x=4时得出y2值的大小即可;⑤由图象得出,抛物线总在直线的下面,即y2>y1时x的取值范围即可.【详解】解:①因为抛物线的顶点坐标A(1,3),所以对称轴为:x=1,则-=1,2a+b=0,故①正确;
②∵抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故②不正确;
③∵抛物线对称轴为x=1,抛物线与x轴的交点B的坐标为(4,0),∴根据对称性可得,抛物线与x轴的另一个交点坐标为(-2,0),故③不正确;④∵抛物线与x轴有两个交点,∴b2-4ac>0,∴的判别式,=b2-4a(c+3)=b2-4ac-12a,又a<0,∴-12a>0,∴=b2-4ac-12a>0,故④正确;⑤当x=-1时,y1=a-b+c>0;当x=4时,y2=4m+n=0,∴a-b+c>4m+n,故⑤不正确;
⑥由图象得:的解集为x<1或x>4;故⑥不正确;
则其中正确的有:①④.
故答案为:①④.【点睛】本题选项较多,比较容易出错,因此要认真理解题意,明确以下几点是关键:①通常2a+b的值都是利用抛物线的对称轴来确定;②抛物线与x轴的交点个数确定其△的值,即b2-4ac的值:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点;③知道对称轴和抛物线的一个交点,利用对称性可以求与x轴的另一交点.12、1【分析】将数据由小排到大,再找到中间的数值,即可求得中位数,奇数个数中位数是中间一个数,偶数个数中位数是中间两个数的平均数。【详解】解:将10个数据由小到大排序:7、8、8、1、1、1、10、10、10、10,处于这组数据中间位置的数是1、1,那么由中位数的定义可知,这组数据的中位数是(1+1)÷2=1.
所以这组同学引体向上个数的中位数是1.
故答案为:1.【点睛】本题为统计题,考查中位数的意义,解题的关键是准确认识表格.13、【分析】过点D'作D'N⊥AC于点N,作D'M⊥BC于点M,由直角三角形的性质可得BC=4cm,AB=8cm,ED=DF=6cm,由“AAS”可证△D'NE'≌△D'MF',可得D'N=D'M,即点D'在射线CD上移动,且当E'D'⊥AC时,DD'值最大,则可求点D运动的路径长,【详解】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm
如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED-CD=(12-6)cm
∴当点E从点A滑动到点C时,点D运动的路径长=2×(12-6)=(24-12)cm【点睛】本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,确定点D的运动轨迹是本题的关键.14、-2【分析】利用反比例函数k的几何意义得到|k|=1,然后根据反比例函数所在的象限确定k的值.【详解】∵△POM的面积等于1,∴|k|=1.∵反比例函数图象过第二象限,∴k<0,∴k=﹣2.故答案为:﹣2.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.15、【分析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.【详解】解:由三视图可知圆柱的底面直径为4,高为6,
∴底面半径为2,
∴V=πr2h=22×6•π=24π,
故答案是:24π.【点睛】此题考查的是圆柱的体积及由三视图判断几何体,关键是先判断圆柱的底面半径和高,然后求其体积.16、【分析】列举出所有情况,看两次都摸到红球的情况占总情况的多少即可.【详解】画树状图图如下:∴一共有20种情况,有6种情况两次都摸到红球,∴两次都摸到红球的概率是.故答案为:.【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17、3【分析】首先利用t表示出CP和CQ的长,根据四边形PQBC是平行四边形时CP=BQ,据此列出方程求解即可.【详解】解:设运动时间为t秒,如图,则CP=12-3t,BQ=t,四边形PQBC为平行四边形12-3t=t,解得:t=3,故答案为【点睛】本题考查了平行四边形的判定及动点问题,解题的关键是化动为静,分别表示出CP和BQ的长,难度不大.18、1【分析】由题意可得m2-3m=2020,进而可得2m2-6m=4040,然后整体代入所求式子计算即可.【详解】解:∵m为一元二次方程x2-3x-2020=0的一个根,∴m2-3m-2020=0,∴m2-3m=2020,∴2m2-6m=4040,∴2m2-6m+2=4040+2=1.故答案为:1.【点睛】本题考查了一元二次方程的解和代数式求值,熟练掌握基本知识、灵活应用整体思想是解题的关键.三、解答题(共66分)19、(1)95分,92分;(2)54;(3)初一;(4)初一,见解析【分析】(1)根据众数和中位数知识计算即可;(2)根据总人数为20人,算出的人数,补全频数分布直方图;再根据表格得出的人数,求出所占的百分比,算出圆心角度数即可;(3)根据初一,初二学生得分的方差判断即可;(4)根据平均数和方差比较,得出结论即可.【详解】解:(1)初一学生得分的众数(分),初二年级得分排列为60,64,74,78,78,82,83,84,86,92,92,92,92,92,92,94,95,96,98,100,初二学生得分的中位数(分),故答案为:95分,92分;(2)的人数为:20-2-2-11=5(人),补全频数分布直方图如下:扇形统计图中,人数为3人,则所对用的圆心角为,故答案为:54;(3)初一得分的方差小于初二得分的方差,∴初一学生得分相对稳定,故答案为:初一;(4)初一阅读效果更好,∵初一阅读成绩的平均数大于初二阅读成绩的平均数,初一得分的方差小于初二得分的方差,∴初一阅读效果更好(答案不唯一,言之有理即可).【点睛】本题是对统计知识的综合考查,熟练掌握频数分布直方图,扇形统计图,及方差知识是解决本题的关键.20、(1)垃圾投放正确的概率为;(2)该城市生活垃圾中的“厨余垃圾”每月(按30天)没有按要求投放的数量为3000(吨).【分析】(1)列表得出所有等可能的情况数,找出垃圾投放正确的情况数,即可求出所求的概率.(2)用样本中投放不正确的数量除以厨余垃圾的总质量,再乘以每月的厨余垃圾的总吨数即可得.【详解】解:(1)列表如下:abcA(a,A)(b,A)(c,A)B(a,B)(b,B)(c,B)C(a,C)(b,C)(c,C)所有等可能的情况数有9种,其中垃圾投放正确的有(a,A);(b,B);(c,C)3种,∴垃圾投放正确的概率为=;(2)该城市生活垃圾中的“厨余垃圾”每月(按30天)没有按要求投放的数量为500×30××=3000(吨).【点睛】考核知识点:概率.运用列举法求概率是关键.21、(1);(2)能成功;理由见解析.【分析】(1)将抛物线解析式整理成顶点式,可得最大值,即为最大高度;(2)将x=4代入抛物线解析式,计算函数值是否等于3.4进行判断.【详解】(1)y=-x2+3x+1=-+∵-<0,∴函数的最大值是.答:演员弹跳的最大高度是米.(2)当x=4时,y=-×42+3×4+1=3.4=BC,所以这次表演成功.【点睛】此题将用待定系数法求二次函数解析式、动点问题和最小值问题相结合,有较大的维跳跃,考查了同学们的应变能力和综合思维能力,是一道好题.22、(1)1;(2)①当0<t<4时,S=﹣t2+6t,当4≤t<6时,S=﹣4t+2,当6<t≤1时,S=t2﹣10t+2,②t=3时,△PBQ的面积最大,最大值为3【分析】(1)求出点Q的运动时间即可判断.(2)①的三个时间段分别求出△PBQ的面积即可.②利用①中结论,求出各个时间段的面积的最大值即可判断.【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=1,故答案为1.(2)①当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=•(6﹣t)×8=﹣4t+2.当6<t≤1时,S=(t﹣6)•(2t﹣8)=t2﹣10t+2.②当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+3,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为3.当4≤t<6时,S=•(6﹣t)×8=﹣4t+2,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤1时,S=(t﹣6)•(2t﹣8)=t2﹣10t+2=(t﹣5)2﹣1,t=1时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为3.【点睛】本题主要考查了二次函数在几何图形中的应用,涉及了分类讨论的数学思想,灵活的利用二次函数的性质求三角形面积的最大值是解题的关键.23、(1)9.5m;(2)20.5m.【分析】(1)根据题意得到,等腰直角三角形,从而得到,从而求解;(2)解直角三角形,求CH,构建方程即可解决问题;【详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土地出售协议合同范例
- 京东快递合作合同模板
- 个人租赁店面合同范例
- 公益事业捐赠合同范例
- 个人陶瓷销售合同模板
- 代销食品免责合同范例
- 2024年全球物流设备采购与租赁合同
- 2024年广告制作发布劳务合同
- 2024年尿素出口合作协议
- 2024年西双版纳c1道路客运输从业资格证怎么考
- 河北省邯郸市思想政治高一上学期2024-2025学年测试试题及答案解析
- 2021新青岛版六三制三年级上册科学全册知识点总结期末复习背诵资料
- 2004年三中会议精神测试题及答案
- 2024年浙江省应急管理行政执法竞赛题库-上(单选、多选题)
- 【2013浙G32】机械连接竹节桩图集
- 安全生产法律法规清单2024.07
- 四肢关节病症推拿治疗-梨状肌综合症患者的推拿治疗
- 人教版高中化学选择性必修1第2章化学反应速率与化学平衡测试含答案
- 《食品添加剂应用技术》第二版 课件 任务3.1 防腐剂的使用
- 房产开发地块收购项目可行性研究报告(完美版)
- 高三一模“人生需要学会绕行”审题立意及范文(彩色高效版)
评论
0/150
提交评论