版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页§1.2常用逻辑用语课标要求1.理解充分条件、必要条件、充要条件的意义;理解判定定理与充分条件、性质定理与必要条件、数学定义与充要条件的关系.2.理解全称量词和存在量词的意义,能正确对两种命题进行否定.知识梳理1.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇏pp是q的必要不充分条件p⇏q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇏q且q⇏p2.全称量词与存在量词(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.3.全称量词命题和存在量词命题名称全称量词命题存在量词命题结构对M中任意一个x,p(x)成立存在M中的元素x,p(x)成立简记∀x∈M,p(x)∃x∈M,p(x)否定∃x∈M,¬p(x)∀x∈M,¬p(x)常用结论1.充分、必要条件与对应集合之间的关系设A={x|p(x)},B={x|q(x)}.(1)若p是q的充分条件,则A⊆B;(2)若p是q的充分不必要条件,则A⫋B;(3)若p是q的必要不充分条件,则B⫋A;(4)若p是q的充要条件,则A=B.2.含有一个量词命题的否定规律是“改变量词,否定结论”.3.命题p与p的否定的真假性相反.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)当p是q的充分条件时,q是p的必要条件.(√)(2)“三角形的内角和为180°”是全称量词命题.(√)(3)“x>1”是“x>0”的充分不必要条件.(√)(4)命题“∃x∈R,sin2eq\f(x,2)+cos2eq\f(x,2)=eq\f(1,2)”是真命题.(×)2.(多选)已知命题p:∀x∈R,x+2≤0,则下列说法正确的是()A.p是真命题B.¬p:∀x∈R,x+2>0C.¬p是真命题D.¬p:∃x∈R,x+2>0答案为:CD解析:当x=0时,x+2≤0不成立,故p是假命题,故A错误;由含量词命题的否定可知,p:∀x∈R,x+2≤0的否定为¬p:∃x∈R,x+2>0,故D正确,B错误;¬p是真命题,故C正确.3.设x>0,y>0,则“x2>y2”是“x>y”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案为:C4.已知A=(-∞,a],B=(-∞,3),且x∈A是x∈B的充分不必要条件,则a的取值范围为________.答案为:(-∞,3)解析:由题意知,x∈A⇒x∈B,x∈B⇏x∈A,即AB,所以a<3.题型一充分、必要条件的判定例1(1已知向量n为平面α的一个法向量,向量m为直线l的一个方向向量,则m∥n是l⊥α的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案为:C解析:当m∥n时,l⊥α,当l⊥α时,m∥n,综上所述,m∥n是l⊥α的充要条件.(2)在等比数列{an}中,“a1>0,且公比q>1”是“{an}为递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案为:A解析:当a1>0,且q>1时,有an+1-an=a1qn-a1qn-1=a1qn-1(q-1)>0,所以an+1>an(n∈N*),即{an}为递增数列;当{an}为递增数列时,即对一切n∈N*,有an+1>an恒成立,所以an+1-an=a1qn-1(q-1)>0,但a1<0且0<q<1时,上式也成立,显然无法得出a1>0,且q>1.则“a1>0,且公比q>1”是“{an}为递增数列”的充分不必要条件.思维升华充分、必要条件的三种判定方法(1)定义法:根据p⇒q,q⇒p是否成立进行判断.(2)集合法:根据p,q成立对应的集合之间的包含关系进行判断.(3)等价转化法:对所给题目的条件进行一系列的等价转化,直到转化成容易判断充分、必要条件是否成立为止.跟踪训练1(1)已知函数f(x)=cos(2x+φ),则“φ=eq\f(π,2)”是“f(x)是奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案为:A解析:f(x)是奇函数等价于cos(-2x+φ)=-cos(2x+φ),即cos(-2x+φ)=cos(π-2x-φ),故-2x+φ=π-2x-φ+2kπ,k∈Z,所以φ=eq\f(π,2)+kπ,k∈Z.则“φ=eq\f(π,2)”是“f(x)是奇函数”的充分不必要条件.题型二充分、必要条件的应用例2在①“x∈A”是“x∈B”的充分条件;②“x∈∁RA”是“x∈∁RB”的必要条件这两个条件中任选一个,补充到本题第(2)问的横线处,并求解下列问题.问题:已知集合A={x|a≤x≤a+2},B={x|(x+1)(x-3)<0}.(1)当a=2时,求A∩B;(2)若________,求实数a的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.解:(1)由(x+1)(x-3)<0,解得-1<x<3,所以B={x|-1<x<3},当a=2时,A={x|2≤x≤4},所以A∩B={x|2≤x<3}.(2)选①“x∈A”是“x∈B”的充分条件,则A⊆B,所以eq\b\lc\{\rc\(\a\vs4\al\co1(a>-1,,a+2<3,))解得-1<a<1,即a∈(-1,1);选②“x∈∁RA”是“x∈∁RB”的必要条件,则A⊆B,所以eq\b\lc\{\rc\(\a\vs4\al\co1(a>-1,,a+2<3,))解得-1<a<1,即a∈(-1,1).充分不必要条件的等价形式p是q的充分不必要条件,等价于¬q是¬p的充分不必要条件.典例已知命题p:|x|≤1,q:x<a,若¬q是¬p的充分不必要条件,则实数a的取值范围为_____________.答案为:(1,+∞)解析:由|x|≤1,即-1≤x≤1,由题意知p是q的充分不必要条件,所以a>1.思维升华求参数问题的解题策略(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.跟踪训练2从①“充分不必要条件”,②“必要不充分条件”这两个条件中任选一个,补充到本题第(2)问的横线处,并解答下列问题:已知集合A={x|eq\f(1,4)≤2x≤32},B={x|x2-4x+4-m2≤0,m∈R}.(1)若m=3,求A∪B;(2)若存在正实数m,使得“x∈A”是“x∈B”成立的________,求正实数m的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.解:(1)依题意,得2-2≤2x≤25,解得-2≤x≤5,即A={x|-2≤x≤5},当m=3时,解不等式x2-4x-5≤0,得-1≤x≤5,即B={x|-1≤x≤5},所以A∪B={x|-2≤x≤5}.(2)选①,由(1)知,A={x|-2≤x≤5},m>0,解不等式x2-4x+4-m2≤0,得2-m≤x≤2+m,即B={x|2-m≤x≤2+m},因为“x∈A”是“x∈B”成立的充分不必要条件,则有A⫋B,于是得eq\b\lc\{\rc\(\a\vs4\al\co1(2-m<-2,,2+m≥5))或eq\b\lc\{\rc\(\a\vs4\al\co1(2-m≤-2,,2+m>5,))解得m>4或m≥4,即有m≥4,所以正实数m的取值范围是m≥4.选②,由(1)知,A={x|-2≤x≤5},m>0,解不等式x2-4x+4-m2≤0,得2-m≤x≤2+m,即B={x|2-m≤x≤2+m},因为“x∈A”是“x∈B”成立的必要不充分条件,则有B⫋A,于是得-2<2-m<2+m≤5或-2≤2-m<2+m<5,解得0<m≤3或0<m<3,即有0<m≤3,所以正实数m的取值范围是0<m≤3.题型三全称量词与存在量词命题点1含量词的命题的否定例3(1)(多选)下列说法正确的是()A.“正方形是菱形”是全称量词命题B.∃x∈R,ex<ex+1C.命题“∃x∈R,x2-2x+3=0”的否定为“∀x∈R,x2-2x+3≠0”D.命题“∀x>1,都有2x+1>5”的否定为“∃x≤1,使得2x+1≤5”答案为:ABC解析:对于A,“正方形是菱形”等价于“所有的正方形都是菱形”,是全称量词命题,故A正确;对于B,当x=1时,e<e+1成立,故B正确;对于C,命题“∃x∈R,x2-2x+3=0”的否定为“∀x∈R,x2-2x+3≠0”,故C正确;对于D,命题“∀x>1,都有2x+1>5”的否定为“∃x>1,使得2x+1≤5”,故D不正确.(2)写出“所有实数都不是无理数”的否定形式:________________________.答案为:至少有一个实数是无理数命题点2含量词的命题的真假判断例4(多选)下列命题中的真命题是()A.∀x∈R,2x-1>0B.∀x∈N*,(x-1)2>0C.∃x∈R,lgx<1D.∃x∈R,tanx=2答案为:ACD解析:指数函数的值域为(0,+∞),所以∀x∈R,2x-1>0,故A正确;当x=1时,(x-1)2=0,所以∀x∈N*,(x-1)2>0是假命题,故B错误;当x=1时,lgx=0<1,所以∃x∈R,lgx<1,故C正确;函数y=tanx的值域为R,所以∃x∈R,tanx=2,故D正确.命题点3含量词的命题的应用例5(1)若命题“∀x∈[-1,2],x2+1≥m”是真命题,则实数m的取值范围是()A.(-∞,0]B.(-∞,1]C.(-∞,2]D.(-∞,5]答案为:B解析:由“∀x∈[-1,2],x2+1≥m”是真命题可知,不等式m≤x2+1,对∀x∈[-1,2]恒成立,因此只需m≤(x2+1)min,x∈[-1,2],易知函数y=x2+1在x∈[-1,2]上的最小值为1,所以m≤1.即实数m的取值范围是(-∞,1].(2)(多选)命题p:∃x∈R,x2+2x+2-m<0为假命题,则实数m的取值可以是()A.-1B.0C.1D.2答案为:ABC解析:若命题p:∃x∈R,x2+2x+2-m<0为真命题,则Δ=22-4(2-m)=4m-4>0,解得m>1,所以当命题p:∃x∈R,x2+2x+2-m<0为假命题时,m≤1,符合条件的为A,B,C选项.思维升华含量词命题的解题策略(1)判定全称量词命题是真命题,需证明都成立;要判定存在量词命题是真命题,只要找到一个成立即可.当一个命题的真假不易判定时,可以先判断其否定的真假.(2)由命题真假求参数的范围,一是直接由命题的真假求参数的范围;二是可利用等价命题求参数的范围.跟踪训练3(1)下列命题为真命题的是()A.任意两个等腰三角形都相似B.所有的梯形都是等腰梯形C.∀x∈R,x+|x|≥0D.∃x∈R,x2-x+1=0答案为:C解析:对于A,任意两个等腰三角形不一定相似,故A错误;对于B,所有的梯形都是等腰梯形是假命题,故B错误;对于C,因为∀x∈R,|x|≥-x,即x+|x|≥0,故C正确;对于D,因为∀x∈R,x2-x+1=eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(1,2)))2+eq\f(3,4)≥eq\f(3,4)>0,故D错误.(2)(多选)已知命题p:∀x∈[0,1],不等式2x-2≥m2-3m恒成立,命题q:∃x∈[1,3],不等式x2-ax+4≤0,则下列说法正确的是()A.命题p的否定是“∃x∈[0,1],不等式2x-2<m2-3m”B.命题q的否定是“∀x∈[1,3],不等式x2-ax+4≥0”C.当命题p为真命题时,1≤m≤2D.当命题q为假命题时,a<4答案为:ACD解析:命题p的否定是“∃x∈[0,1],不等式2x-2<m2-3m”,故A正确;命题q的否定是“∀x∈[1,3],不等式x2-ax+4>0”,故B错误;若命题p为真命题,则当x∈[0,1]时,(2x-2)min≥m2-3m,即m2-3m+2≤0,解得1≤m≤2,故C正确;若命题q为假命题,则∀x∈[1,3],不等式x2-ax+4>0为真命题,即a<x+eq\f(4,x)恒成立,因为x+eq\f(4,x)≥2eq\r(x·\f(4,x))=4,当且仅当x=eq\f(4,x),即x=2时取等号,所以a<4,故D正确.课时精练一、单项选择题1.命题“∃x>0,sinx-x≤0”的否定为()A.∀x≤0,sinx-x>0B.∃x>0,sinx-x≤0C.∀x>0,sinx-x>0D.∃x≤0,sinx-x>0答案为:C解析:由题意知命题“∃x>0,sinx-x≤0”为存在量词命题,其否定为全称量词命题,即∀x>0,sinx-x>0.2.下列命题中,p是q的充分条件的是()A.p:ab≠0,q:a≠0B.p:a2+b2≥0,q:a≥0且b≥0C.p:x2>1,q:x>1D.p:a>b,q:eq\r(a)>eq\r(b)答案为:A解析:对于A,ab≠0⇔eq\b\lc\{\rc\(\a\vs4\al\co1(a≠0,,b≠0))⇒a≠0,故p是q的充分条件;对于B,a2+b2≥0⇔eq\b\lc\{\rc\(\a\vs4\al\co1(a∈R,,b∈R))⇏a≥0且b≥0,故p不是q的充分条件;对于C,x2>1⇔x>1或x<-1⇏x>1,故p不是q的充分条件;对于D,当a>b时,若b<a<0,则不能推出eq\r(a)>eq\r(b),故p不是q的充分条件.3.设λ∈R,则“λ=1”是“直线3x+(λ-1)y=1与直线λx+(1-λ)y=2平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案为:A解析:若直线3x+(λ-1)y=1与直线λx+(1-λ)y=2平行,则3(1-λ)-λ(λ-1)=0,解得λ=1或λ=-3,经检验,当λ=1或λ=-3时,两直线平行.即“λ=1”是“直线3x+(λ-1)y=1与直线λx+(1-λ)y=2平行”的充分不必要条件.4.已知p:eq\f(1,x)>1,q:x>m,若p是q的充分条件,则实数m的取值范围是()A.[0,+∞)B.[1,+∞)C.(-∞,0]D.(-∞,1]答案为:C解析:由eq\f(1,x)>1可得x(x-1)<0,解得0<x<1,记A={x|0<x<1},B={x|x>m},若p是q的充分条件,则A是B的子集,所以m≤0,所以实数m的取值范围是(-∞,0].5.下列说法正确的是()A.“对任意一个无理数x,x2也是无理数”是真命题B.“xy>0”是“x+y>0”的充要条件C.命题“∃x∈R,使得x2+1>0”的否定是“∀x∈R,x2+1<0”D.若“1<x<3”的一个必要不充分条件是“m-2<x<m+2”,则实数m的取值范围是[1,3]答案为:D解析:eq\r(2)是无理数,x2=2是有理数,A错误;当x=-2,y=-1时,xy>0,但x+y=-3<0,不是充要条件,B错误;命题“∃x∈R,使得x2+1>0”的否定是“∀x∈R,x2+1≤0”,C错误;“1<x<3”的必要不充分条件是“m-2<x<m+2”,则eq\b\lc\{\rc\(\a\vs4\al\co1(m-2≤1,,m+2≥3,))两个不等式的等号不同时取到,解得1≤m≤3,D正确.6.设p:关于x的不等式x2+ax+1>0对一切x∈R恒成立,q:对数函数y=log(4-3a)x在(0,+∞)上单调递减,那么p是q的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件答案为:C解析:若关于x的不等式x2+ax+1>0对一切x∈R恒成立,则Δ=a2-4<0,即-2<a<2;若对数函数y=log(4-3a)x在(0,+∞)上单调递减,则0<4-3a<1,即1<a<eq\f(4,3).∵eq\b\lc\(\rc\)(\a\vs4\al\co1(1,\f(4,3)))(-2,2),∴p是q的必要不充分条件.7.已知命题p:∃x∈R,ax2+2ax-4≥0为假命题,则实数a的取值范围是()A.-4<a<0B.-4≤a<0C.-4<a≤0D.-4≤a≤0答案为:C解析:命题p:∃x∈R,ax2+2ax-4≥0为假命题,即命题¬p:∀x∈R,ax2+2ax-4<0为真命题,当a=0时,-4<0恒成立,符合题意;当a≠0时,则a<0且Δ=(2a)2+16a<0,即-4<a<0.综上可知,-4<a≤0.8.记Sn为数列{an}的前n项和,设甲:{an}为等差数列;乙:{eq\f(Sn,n)}为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案为:C解析:方法一甲:{an}为等差数列,设其首项为a1,公差为d,则Sn=na1+eq\f(nn-1,2)d,eq\f(Sn,n)=a1+eq\f(n-1,2)d=eq\f(d,2)n+a1-eq\f(d,2),eq\f(Sn+1,n+1)-eq\f(Sn,n)=eq\f(d,2),因此{eq\f(Sn,n)}为等差数列,则甲是乙的充分条件;反之,乙:{eq\f(Sn,n)}为等差数列,即eq\f(Sn+1,n+1)-eq\f(Sn,n)=eq\f(nSn+1-n+1Sn,nn+1)=eq\f(nan+1-Sn,nn+1)为常数,设为t,即eq\f(nan+1-Sn,nn+1)=t,则Sn=nan+1-t·n(n+1),有Sn-1=(n-1)an-t·n(n-1),n≥2,两式相减得an=nan+1-(n-1)an-2tn,即an+1-an=2t,对n=1也成立,因此{an}为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件.方法二甲:{an}为等差数列,设数列{an}的首项为a1,公差为d,即Sn=na1+eq\f(nn-1,2)d,则eq\f(Sn,n)=a1+eq\f(n-1,2)d=eq\f(d,2)n+a1-eq\f(d,2),因此{eq\f(Sn,n)}为等差数列,即甲是乙的充分条件;反之,乙:{eq\f(Sn,n)}为等差数列,设数列{eq\f(Sn,n)}的公差为D,则eq\f(Sn+1,n+1)-eq\f(Sn,n)=D,eq\f(Sn,n)=S1+(n-1)D,即Sn=nS1+n(n-1)D,当n≥2时,Sn-1=(n-1)S1+(n-1)(n-2)D,上边两式相减得Sn-Sn-1=S1+2(n-1)D,所以an=a1+2(n-1)D,当n=1时,上式成立,又an+1-an=a1+2nD-[a1+2(n-1)D]=2D为常数,因此{an}为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件.二、多项选择题9.下列命题是真命题的是()A.∃a∈R,使函数y=2x+a·2-x在R上为偶函数B.∀x∈R,函数y=sinx+cosx+eq\r(2)的值恒为正数C.∃x∈R,2x<x2D.∀x∈(0,+∞),(eq\f(1,3))x>SKIPIF1<0答案为:AC解析:当a=1时,y=2x+2-x为偶函数,故A为真命题;y=sinx+cosx+eq\r(2)=eq\r(2)sineq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(π,4)))+eq\r(2),当sineq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(π,4)))=-1时,y=0,故B为假命题;当x∈(2,4)时,2x<x2,故C为真命题;当x=eq\f(1,3)时,SKIPIF1<0∈(0,1),SKIPIF1<0=1,∴SKIPIF1<0,故D为假命题.10.下列命题中正确的是()A.“A∪B=A”是“B⊆A”的充分不必要条件B.“方程x2-(m-3)x+m=0有一正一负根”的充要条件是“m<0”C.“幂函数y=SKIPIF1<0为反比例函数”的充要条件是“m=0”D.“函数f(x)=-x2+2mx在区间[1,3]上不单调”的一个必要不充分条件是“1≤m≤3”答案为:BCD解析:对于A,由A∪B=A可得B⊆A,故充分性成立,由B⊆A可得A∪B=A,故必要性成立,所以“A∪B=A”是“B⊆A”的充要条件,故A错误;对于B,方程x2-(m-3)x+m=0有一正一负根,设为x1,x2,则eq\b\lc\{\rc\(\a\vs4\al\co1(Δ=m-32-4m>0,,x1x2=m<0,))解得m<0,满足必要性,当m<0时,Δ=(m-3)2-4m>
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年房地产并购融资协议3篇
- 二零二四年河湖清淤环境治理合同2篇
- 2024年春季农产品交易协议版
- 2024年升级版房屋对换合约3篇
- 2024年新款羊毛衫买卖合同版B版
- 2024年度农庄生态农业观光园租赁合同范本2篇
- 2024年技术实习协议3篇
- 2024年度建筑外脚手架施工协议样本版B版
- 2024年度高级酒店多功能会议室租赁合同版B版
- 2024至2030年中国室内用温度计行业投资前景及策略咨询研究报告
- 人教版(2024)八年级上册物理第六章 质量与密度 单元测试卷(含答案解析)
- 土家族简介课件
- 2024年医院人事科年终工作总结例文(5篇)
- 【飞书深诺】2024年度全球跨境电商平台深度解析
- 2024年山东省菏泽市中考历史试卷
- 《班组建设模板》课件
- 教科版二年级科学上册《第2单元2.2 不同材料的餐具》教学课件
- 小学五年级数学奥数单选题100道及答案解析
- 《基于javaweb的网上书店系统设计与实现》
- 骨科3D打印临床应用指南2024
- 《皇帝的新装》课件
评论
0/150
提交评论