安徽省合肥市庐阳区2025届九年级数学第一学期期末监测试题含解析_第1页
安徽省合肥市庐阳区2025届九年级数学第一学期期末监测试题含解析_第2页
安徽省合肥市庐阳区2025届九年级数学第一学期期末监测试题含解析_第3页
安徽省合肥市庐阳区2025届九年级数学第一学期期末监测试题含解析_第4页
安徽省合肥市庐阳区2025届九年级数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市庐阳区2025届九年级数学第一学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列命题中,不正确的是()A.对角线相等的矩形是正方形 B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等 D.顺次连结菱形各边中点所得的四边形是矩形2.如图,在4×4的正方形方格中,和的顶点都在边长为1的小正方形的格点上,则的值为()A. B. C. D.33.抛物线y=ax2+bx+c(a≠0)形状如图,下列结论:①b>0;②a﹣b+c=0;③当x<﹣1或x>3时,y>0;④一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根.正确的有()A.4个 B.3个 C.2个 D.1个4.如图,是坐标原点,菱形顶点的坐标为,顶点在轴的负半轴上,反比例函数的图象经过顶点,则的值为()A. B. C. D.5.如图,∠ACB是⊙O的圆周角,若⊙O的半径为10,∠ACB=45°,则扇形AOB的面积为()A.5π B.12.5π C.20π D.25π6.下列图形中,既是轴对称图形,又是中心对称图形的个数有()A.1个 B.2个 C.3个 D.4个7.如图(1)所示,为矩形的边上一点,动点,同时从点出发,点沿折线运动到点时停止,点沿运动到点时停止,它们运动的速度都是秒,设、同时出发秒时,的面积为.已知与的函数关系图象如图(2)(曲线为抛物线的一部分)则下列结论正确的是()图(1)图(2)A. B.当是等边三角形时,秒C.当时,秒 D.当的面积为时,的值是或秒8.下列图形,是轴对称图形,但不是中心对称图形的是()A. B. C. D.9.如图,扇形AOB中,半径OA=2,∠AOB=120°,C是弧AB的中点,连接AC、BC,则图中阴影部分面积是()A. B.C. D.10.“汽车行驶到有交通信号灯的路口时,前方恰好遇到绿灯”,这个事件是()A.确定事件 B.随机事件 C.不可能事件 D.必然事件二、填空题(每小题3分,共24分)11.如图,PA,PB是⊙O的切线,切点分别是点A和B,AC是⊙O的直径.若∠P=60°,PA=6,则BC的长为__________.12.如图,在中,,,以为直角边、为直角顶点作等腰直角三角形,则______.13.)已知反比例函数y=-,下列结论:①图象必经过点(-1,2);②y随x的增大而增大;③图象在第二、四象限内;④若x>1,则y>-2.其中正确的有__________.(填序号)14.x台拖拉机,每天工作x小时,x天耕地x亩,则y台拖拉机,每天工作y小时,y天耕____亩.15.已知线段AB=4,点P是线段AB的黄金分割点,且AP<BP,那么AP的长为_____.16.如图,一段与水平面成30°角的斜坡上有两棵树,两棵树水平距离为,树的高度都是.一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞____________.17.在平面直角坐标系中,点(4,-5)关于原点的对称点的坐标是________.18.___________.三、解答题(共66分)19.(10分)京剧脸谱是京剧艺术独特的表现形式.京剧表演中,经常用脸谱象征人物的性格,品质,甚至角色和命运.如红脸代表忠心耿直,黑脸代表强悍勇猛.现有三张不透明的卡片,其中两张卡片的正面图案为“红脸”,另外一张卡片的正面图案为“黑脸”,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图或列表的方法,求抽出的两张卡片上的图案都是“红脸”的概率.(图案为“红脸”的两张卡片分别记为A1、A2,图案为“黑脸”的卡片记为B)20.(6分)如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数解析式;(2)点F为线段AC上一动点,过点F作FE⊥x轴,FG⊥y轴,垂足分别为点E,G,当四边形OEFG为正方形时,求出点F的坐标;(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,请说明理由.21.(6分)在平面直角坐标系中,直线与双曲线交于点A(2,a).(1)求与的值;(2)画出双曲线的示意图;(3)设点是双曲线上一点(与不重合),直线与轴交于点,当时,结合图象,直接写出的值.22.(8分)已知:中,.(1)求作:的外接圆;(要求:尺规作图,保留作图痕迹,不写作法)(2)若的外接圆的圆心到边的距离为4,,求的面积.23.(8分)阅读下面材料,完成(1),(2)两题数学课上,老师出示了这样一道题:如图1,在中,,,点为上一点,且满足,为上一点,,延长交于,求的值.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现与相等.”小伟:“通过构造全等三角形,经过进一步推理,就可以求出的值.”……老师:“把原题条件中的‘’,改为‘’其他条件不变(如图2),也可以求出的值.(1)在图1中,①求证:;②求出的值;(2)如图2,若,直接写出的值(用含的代数式表示).24.(8分)如图,在平面直角坐标系中,的顶点坐标分别为(6,4),(4,0),(2,0).(1)在轴左侧,以为位似中心,画出,使它与的相似比为1:2;(2)根据(1)的作图,=.25.(10分)(1)计算:计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017;(2)先化简,再求值:÷,其中满足.26.(10分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N.连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.

参考答案一、选择题(每小题3分,共30分)1、A【分析】利用矩形的判定、菱形的判定、正方形的判定及平行四边形的判定定理分别进行判定后即可确定正确的选项.【详解】A.对角线相等的菱形是正方形,原选项错误,符合题意;B.对角线垂直平分的平行四边形是菱形,正确,不符合题意;C.正方形的对角线平分且相等,正确,不符合题意;D.顺次连结菱形各边中点所得的四边形是平行四边形,正确,不符合题意;故选A.【点睛】本题考查正方形、矩形、平行四边形、菱形的性质定义,根据其性质对选项进行判断是解题关键.2、B【分析】根据勾股定理求出和的各边长,由三边对应成比例的两个三角形相似可得,所以可得,求值即可.【详解】解:由勾股定理,得,,,,,,,,,,.故选:B【点睛】本题考查了相似三角形的判定与性质及解直角三角形,灵活利用正方形方格的特点是解题的关键.3、B【分析】根据抛物线的开口方向、对称轴、顶点坐标和增减性,以及二次函数与一元二次方程的关系逐个进行判断即可.【详解】解:由抛物线开口向上,可知a>1,对称轴偏在y轴的右侧,a、b异号,b<1,因此①不符合题意;由对称轴为x=1,抛物线与x轴的一个交点为(3,1),可知与x轴另一个交点为(﹣1,1),代入得a﹣b+c=1,因此②符合题意;由图象可知,当x<﹣1或x>3时,图象位于x轴的上方,即y>1.因此③符合题意;抛物线与y=﹣1一定有两个交点,即一元二次方程ax2+bx+c+1=1(a≠1)有两个不相等的实数根,因此④符合题意;综上,正确的有3个,故选:B.【点睛】本题考查了二次函数的性质和二次函数同一元二次方程的关系,解决本题的关键是正确理解题意,熟练掌握二次函数的性质.4、C【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【详解】∵,

∴,∵四边形OABC是菱形,

∴AO=CB=OC=AB=5,

则点B的横坐标为,

故B的坐标为:,

将点B的坐标代入得,,

解得:.

故选:C.【点睛】本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B的坐标.5、D【分析】首先根据圆周角的度数求得圆心角的度数,然后代入扇形的面积公式求解即可.【详解】解:∵∠ACB=45°,∴∠AOB=90°,∵半径为10,∴扇形AOB的面积为:=25π,故选:D.【点睛】考查了圆周角定理及扇形的面积公式,解题的关键是牢记扇形的面积公式并正确的运算.6、B【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】(1)是轴对称图形,不是中心对称图形.不符合题意;(2)不是轴对称图形,是中心对称图形,不符合题意;(3)是轴对称图形,也是中心对称图形,符合题意;(4)是轴对称图形,也是中心对称图形,符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.7、D【分析】先根据图象信息求出AB、BE、BE、AE、ED,A、直接求出比,B、先判断出∠EBC≠60°,从而得出点P可能在ED上时,△PBQ是等边三角形,但必须是AD的中点,而AE>ED,所以点P不可能到AD中点的位置,故△PBQ不可能是等边三角形;C、利用相似三角形性质列出方程解决,分两种情况讨论计算即可,D、分点P在BE上和点P在CD上两种情况计算即可.【详解】由图象可知,AD=BC=BE=5,CD=AB=4,AE=3,DE=2,A、∴AB:AD=5:4,故A错误,B、∵tan∠ABE=,∴∠ABE≠30°∴∠PBQ≠60°,∴点P在ED时,有可能△PBQ是等边三角形,∵BE=BC,∴点P到点E时,点Q到点C,∴点P在线段AD中点时,有可能△PBQ是等边三角形,∵AE>DE,∴点P不可能到AD的中点,∴△PBQ不可能是等边三角形,故B错误,C、∵△ABE∽△QBP,∴点E只有在CD上,且满足,∴,∴CP=.∴t=(BE+ED+DQ)÷1=5+2+(4−)=.故C错误,D、①如图(1)在Rt△ABE中,AB=4,BE=5sin∠AEB=,∴sin∠CBE=∵BP=t,∴PG=BPsin∠CBE=t,∴S△BPQ=BQ×PG=×t×t=t2=4,∴t=−(舍)或t=,②当点P在CD上时,S△BPQ=×BC×PC=×5×(5+2+4−t)=×(11−t)=4,∴t=,∴当△BPQ的面积为4cm2时,t的值是或秒,故D正确,故选:D.【点睛】此题是二次函数综合题,主要考查动点问题的函数图象、矩形的性质、三角形的面积公式等知识.解题的关键是读懂图象信息求出相应的线段,学会转化的思想,把问题转化为方程的思想解决,属于中考常考题型..8、A【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C.是轴对称图形,是中心对称图形,不符合题意;D.是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.9、A【解析】试题分析:连接AB、OC,ABOC,所以可将四边形AOBC分成三角形ABC、和三角形AOB,进行求面积,求得四边形面积是,扇形面积是S=πr2=,所以阴影部分面积是扇形面积减去四边形面积即.故选A.10、B【分析】直接利用随机事件的定义分析得出答案.【详解】解:“汽车行驶到有交通信号灯的路口时,前方恰好遇到绿灯”,这个事件是随机事件.故选B.【点睛】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.二、填空题(每小题3分,共24分)11、【分析】连接AB,根据PA,PB是⊙O的切线可得PA=PB,从而得出AB=6,然后利用∠P=60°得出∠CAB为30°,最后根据直角三角形中30°角的正切值进一步计算即可.【详解】如图,连接AB,∵PA,PB是⊙O的切线,∴PA=PB,∵∠P=60°,∴△ABP为等边三角形,∴AB=6,∵∠P=60°,∴∠CAB=30°,易得△ABC为直角三角形,∴,∴BC=AB×=,故答案为:.【点睛】本题主要考查了圆中切线长与三角函数的综合运用,熟练掌握相关概念是解题关键.12、1【分析】由于AD=AB,∠CAD=90°,则可将△ABD绕点A逆时针旋转90°得△ABE,如图,根据旋转的性质得∠CAE=90°,AC=AE,BE=CD,于是可判断△ACE为等腰直角三角形,则∠ACE=45°,CE=AC=5,易得∠BCE=90°,然后在Rt△CAE中利用勾股定理计算出BE=1,从而得到CD=1.【详解】解:∵△ADB为等腰直角三角形,∴AD=AB,∠BAD=90°,将△ACD绕点A顺时针旋转90°得△AEB,如图,∴∠CAE=90°,AC=AE,CD=BE,∴△ACE为等腰直角三角形,∴∠ACE=45°,,∵∠ACB=45°,∴∠BCE=45°+45°=90°,在Rt△BCE中,,∴CD=1.故答案为1.【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,以及勾股定理等知识.旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键的利用旋转得到直角三角形CBE.13、①③④【解析】①当x=﹣1时,y=2,即图象必经过点(﹣1,2);②k=﹣2<0,每一象限内,y随x的增大而增大;③k=﹣2<0,图象在第二、四象限内;④k=﹣2<0,每一象限内,y随x的增大而增大,若x>1,则y>﹣2,故答案为①③④.14、【分析】先求出一台拖拉机1小时的工作效率,然后求y台拖拉机在y天,每天工作y小时的工作量.【详解】一台拖拉机1小时的工作效率为:∴y台拖拉机,y天,每天y小时的工作量=故答案为:【点睛】本题考查工程问题,解题关键是求解出一台拖拉机1小时的工作效率.15、(6﹣2)cm.【解析】根据黄金分割点的定义和AP<BP得出PB=AB,代入数据即可得出BP的长度.【详解】解:由于P为线段AB=4的黄金分割点,且AP<BP,则BP=×4=(2

-2)cm.∴AP=4-BP=故答案为:()cm.【点评】本题考查了黄金分割.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的

.16、1【分析】依题意可知所求的长度等于AB的长,通过解直角△ABC即可求解.【详解】如图,∵∠BAC=30,∠ACB=90,AC=,∴AB=AC/cos30=(m).故答案是:1.【点睛】本题考查了解直角三角形的应用−坡度坡角问题.应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.17、(-4,5)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:点(4,-5)关于原点的对称点的坐标是(-4,5),故答案为:(-4,5).【点睛】此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.18、【分析】直接代入特殊角的三角函数值进行计算即可.【详解】原式.故答数为:.【点睛】本题考查了特殊角的三角函数值及实数的运算,熟记特殊角的三角函数值是解题的关键.三、解答题(共66分)19、【分析】根据题意画出树状图,求出所有的情况数和两次抽取的卡片上都是“红脸”的情况数,再根据概率公式计算即可.【详解】画树状图为:由树状图可知,所有可能出现的结果共有9种,其中两次抽取的卡片上都是“红脸”的结果有4种,所以P(两张都是“红脸”),答:抽出的两张卡片上的图案都是“红脸”的概率是.【点睛】本题考查了概率的求法.用到的知识点为数状图和概率,概率=所求情况数与总情况数之比,关键是根据题意画出树状图.20、(1)y=﹣x2+;(2)(1,1);(3)当△DMN是等腰三角形时,t的值为,3﹣或1.【解析】试题分析:(1)易得抛物线的顶点为(0,),然后只需运用待定系数法,就可求出抛物线的函数关系表达式;(2)①当点F在第一象限时,如图1,可求出点C的坐标,直线AC的解析式,设正方形OEFG的边长为p,则F(p,p),代入直线AC的解析式,就可求出点F的坐标;②当点F在第二象限时,同理可求出点F的坐标,此时点F不在线段AC上,故舍去;(3)过点M作MH⊥DN于H,如图2,由题可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三种情况(①DN=DM,②ND=NM,③MN=MD)讨论就可解决问题.试题解析:(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y=ax2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,∴抛物线的函数关系表达式为y=﹣x2+;(2)①当点F在第一象限时,如图1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有,解得,∴直线AC的解析式为y=﹣x+.设正方形OEFG的边长为p,则F(p,p).∵点F(p,p)在直线y=﹣x+上,∴﹣p+=p,解得p=1,∴点F的坐标为(1,1).②当点F在第二象限时,同理可得:点F的坐标为(﹣3,3),此时点F不在线段AC上,故舍去.综上所述:点F的坐标为(1,1);(3)过点M作MH⊥DN于H,如图2,则OD=t,OE=t+1.∵点E和点C重合时停止运动,∴0≤t≤2.当x=t时,y=﹣t+,则N(t,﹣t+),DN=﹣t+.当x=t+1时,y=﹣(t+1)+=﹣t+1,则M(t+1,﹣t+1),ME=﹣t+1.在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN2=12+()2=.①当DN=DM时,(﹣t+)2=t2﹣t+2,解得t=;②当ND=NM时,﹣t+=,解得t=3﹣;③当MN=MD时,=t2﹣t+2,解得t1=1,t2=3.∵0≤t≤2,∴t=1.综上所述:当△DMN是等腰三角形时,t的值为,3﹣或1.考点:二次函数综合题.21、(1),;(2)示意图见解析;(3)6,.【分析】(1)把点A(2,a)代入直线解析式求出a,再把A(2,a)代入双曲线求出k即可;(2)先列表,再描点,然后连线即可;(3)利用数形结思想观察图形即可得到答案.【详解】(1)∵直线过点,∴.又∵双曲线()过点A(2,2),∴.(2)列表如下:x…-4-2-1124…y…-1-2-4421…描点,连线如下:(3)6,.①当点P在第一象限时,如图,过点A作AC⊥y轴于点C,过点P作PD⊥y轴于点D,则△BDP∽△BCA,∴=∵点A(2,2),∴AC=2,OC=2.∴PD=1.即m=1,当m=1时,n=.即OD=4,∴CD=OD-OC=2.∴BD=CD=2.∴OB=BD+OD=6即b=6.②当点p在第三象限时,如图,过点A作AC⊥y轴于点C,过点P作PD⊥y轴于点D,则△BDP∽△BCA,∴=∵点A(2,2),∴AC=2,OC=2.∴PD=1.∵点p在第三象限,∴m=-1,当m=-1时,n=-4,∴OD=4,∵BD=OD-OB=4+b,CD=OC+OB=2-b,∴解得,b=-2.综上所述,b的值为6或-2.【点睛】本题考查了一次函数与反比例函数的综合,掌握相关知识是解题的关键.22、(1)详见解析;(2)【分析】(1)分别作出AB、BC的垂直平分线,两条垂直平分线的交点即是圆的圆心,以O为圆心,OB为半径作圆即可,如图所示.(2)已知的外接圆的圆心到边的距离为4,,利用勾股定理即可求出OB2,再根据圆的面积公式即可求解.【详解】解:(1)如图(2)设BC的垂直平分线交BC于点D由题意得:,在Rt中,∴【点睛】本题主要考查的是圆的外接三角形尺规作图法和勾股定理的应用,掌握这两个知识点是解题的关键.23、(1)①证明见解析;②;(2)【分析】(1)①根据三角形内角和定理可得,然后根据三角形外角的性质可得,从而证出结论;②过点作交的延长线于点,过点作于点,过点作交于点,利用ASA证出,可得,再利用AAS证出,可得,利用平行线分线段成比例定理即可证出结论;(2)根据三角形内角和定理可得,然后根据三角形外角的性质可得,过点作交的延长线于点,过点作于点,过点作交于点,利用ASA证出,可得,再利用相似三角形的判定证出,可得,利用平行线分线段成比例定理即可证出结论;【详解】证明:(1)①∵,∴∵,∴,∴②如图,过点作交的延长线于点,过点作于点,过点作交于点,∵,,∴,∴,∵∴,∴∵点是中点,∴∵,∴,∴∵∴,∴∵∴(2)∵,∴∵,∴,∴过点作交的延长线于点,过点作于点,过点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论