福建省三明永安市2022年数学九上期末质量检测试题含解析_第1页
福建省三明永安市2022年数学九上期末质量检测试题含解析_第2页
福建省三明永安市2022年数学九上期末质量检测试题含解析_第3页
福建省三明永安市2022年数学九上期末质量检测试题含解析_第4页
福建省三明永安市2022年数学九上期末质量检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如果关于的方程没有实数根,那么的最大整数值是()A.-3 B.-2 C.-1 D.02.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25C.36(1﹣x)2=25 D.36(1﹣x2)=253.在Rt△ABC中,∠C=90°,若,则的值为()A.1 B. C. D.4.函数的自变量的取值范围是()A. B. C. D.且5.点A(﹣5,4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,点A,B,C都在⊙O上,若∠C=30°,则∠AOB的度数为()A.30° B.60° C.150° D.120°7.如图,在平面直角坐标系中,四边形为菱形,,,,则对角线交点的坐标为()A. B. C. D.8.如图,是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第30个“上”字需用多少枚棋子()A.122 B.120 C.118 D.1169.如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是()A.或 B.或C.或 D.或10.在下列图形中,是中心对称图形的是()A. B.C. D.11.下列函数是关于的反比例函数的是()A. B. C. D.12.下列运算正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于,则这个圆锥的母线长为_____.14.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+5=_____.15.在函数y=+(x﹣5)﹣1中,自变量x的取值范围是_____.16.如图所示的两个四边形相似,则的度数是.17.直角三角形ABC中,∠B=90°,若cosA=,AB=12,则直角边BC长为___.18.已知一组数据:4,4,,6,6的平均数是5,则这组数据的方差是______.三、解答题(共78分)19.(8分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B,(1)求证:△ADF∽△DEC(2)若AB=4,AD=3,AE=3,求AF的长.20.(8分)在平面直角坐标系中,已知P(,),R(,)两点,且,,若过点P作轴的平行线,过点R作轴的平行线,两平行线交于一点S,连接PR,则称△PRS为点P,R,S的“坐标轴三角形”.若过点R作轴的平行线,过点P作轴的平行线,两平行线交于一点,连接PR,则称△RP为点R,P,的“坐标轴三角形”.右图为点P,R,S的“坐标轴三角形”的示意图.(1)已知点A(0,4),点B(3,0),若△ABC是点A,B,C的“坐标轴三角形”,则点C的坐标为;(2)已知点D(2,1),点E(e,4),若点D,E,F的“坐标轴三角形”的面积为3,求e的值.(3)若的半径为,点M(,4),若在上存在一点N,使得点N,M,G的“坐标轴三角形”为等腰三角形,求的取值范围.21.(8分)商场某种商品平均每天可销售件,每件盈利元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价元,商场平均每天可多售出件,设每件商品降价元(为正整数).据此规律,请回答:(1)商场日销轡量增加件,每件商品盈利元(用含的代数式表示);(2)每件商品降价多少元时,商场日盈利可达到元;(3)在上述条件不变,销售正常情况下,求商场日盈利的最大值.22.(10分)如图,二次函数的图象与轴交于点和点,与轴交于点,以为边在轴上方作正方形,点是轴上一动点,连接,过点作的垂线与轴交于点.(1)求该抛物线的函数关系表达式;(2)当点在线段(点不与重合)上运动至何处时,线段的长有最大值?并求出这个最大值;(3)在第四象限的抛物线上任取一点,连接.请问:的面积是否存在最大值?若存在,求出此时点的坐标;若不存在,请说明理由.23.(10分)已知反比例函数的图象与一次函数的图象相交于点(2,1).(1)分别求出这两个函数的解析式;(2)试判断点P(-1,5)关于x轴的对称点P'是否在一次函数图象上.24.(10分)如图,在平面直角坐标系中,一次函数y=x+2的图象与y轴交于A点,与x轴交于B点,⊙P的半径为,其圆心P在x轴上运动.(1)如图1,当圆心P的坐标为(1,0)时,求证:⊙P与直线AB相切;(2)在(1)的条件下,点C为⊙P上在第一象限内的一点,过点C作⊙P的切线交直线AB于点D,且∠ADC=120°,求D点的坐标;(3)如图2,若⊙P向左运动,圆心P与点B重合,且⊙P与线段AB交于E点,与线段BO相交于F点,G点为弧EF上一点,直接写出AG+OG的最小值.25.(12分)某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量(个)与y销售单价x(元)有如下关系:,设这种双肩包每天的销售利润为w元.(1)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(2)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?26.为支持大学生勤工俭学,市政府向某大学生提供了万元的无息贷款用于销售某种自主研发的产品,并约定该学生用经营的利润逐步偿还无息贷款,已知该产品的生产成本为每件元.每天还要支付其他费用元.该产品每天的销售量件与销售单价元关系为.(1)设每天的利润为元,当销售单价定为多少元时,每天的利润最大?最大利润为多少元?注:每天的利润每天的销售利润一每天的支出费用(2)若销售单价不得低于其生产成本,且销售每件产品的利润率不能超过,则该学生最快用多少天可以还清无息贷款?

参考答案一、选择题(每题4分,共48分)1、B【分析】先根据根的判别式求出k的取值范围,再从中找到最大整数即可.【详解】解得∴k的最大整数值是-2故选:B.【点睛】本题主要考查根的判别式,掌握根的判别式与根的个数的关系是解题的关键.2、C【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=1,把相应数值代入即可求解.【详解】解:第一次降价后的价格为36×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1﹣x)×(1﹣x),则列出的方程是36×(1﹣x)2=1.故选:C.【点睛】考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.3、B【分析】根据互余角的三角函数间的关系:sin(90°-α)=cosα,cos(90°-α)=sinα解答即可.【详解】解:解:∵在△ABC中,∠C=90°,

∴∠A+∠B=90°,

∴sinA=cosB=,

故选:B.【点睛】本题考查了互余两角的三角函数关系式,掌握当∠A+∠B=90°时,sinA=cosB是解题的关键.4、C【解析】根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.【详解】由题意得,且,

解得:.

故选:C.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:①当函数表达式是整式时,自变量可取全体实数;②当函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负.5、B【分析】根据象限内点的坐标特点即可解答.【详解】点A(﹣5,4)所在的象限是第二象限,故选:B.【点睛】此题考查象限内点的坐标,熟记每个象限及坐标轴上点的坐标特点是解题的关键.6、B【分析】根据圆周角定理结合∠C=30°,即可得出∠AOB的度数.【详解】∵∠C=30°,∴∠AOB=2∠C=60°.故选:B.【点睛】本题考查了圆周角定理,解题的关键是利用同弧所对的圆心角是圆周角的2倍解决题.本题属于基础题,难度不大,解决该题型题目时,熟练运用圆周角定理解决问题是关键.7、D【分析】过点作轴于点,由直角三角形的性质求出长和长即可.【详解】解:过点作轴于点,∵四边形为菱形,,∴,OB⊥AC,,∵,∴,∴,∴,,∴,∴.故选D.【点睛】本题考查了菱形的性质、勾股定理及含30°直角三角形的性质,正确作出辅助线是解题的关键.8、A【分析】可以将上字看做有四个端点每次每个端点增加一个,还有两个点在里面不发生变化.找到其规律即可解答.【详解】第1个“上”字中的棋子个数是6;第2个“上”字中的棋子个数是10;第3个“上”字中的棋子个数是14;进一步发现规律:第n个“上”字中的棋子个数是(4n+2).所以第30个“上”字需要4×30+2=122枚棋子.

故选:A.【点睛】此题考查规律型:图形的变化,解题关键是通过归纳与总结,得到其中的规律.9、B【分析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:或时,一次函数图象在反比例函数图象上方,∴使成立的取值范围是或,故选B.【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.10、C【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.据此判断即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.【点睛】本题考查的是中心对称图形的概念:中心对称图形关键是寻找对称中心,旋转180度后与原图重合.11、B【分析】根据反比例函数的定义进行判断.【详解】A.,是一次函数,此选项错误;B.,是反比例函数,此选项正确;C.,是二次函数,此选项错误;D.,是y关于(x+1)的反比例函数,此选项错误.故选:B【点睛】本题考查了反比例函数的定义,解题的关键是掌握反比例函数的定义.12、D【分析】按照有理数、乘方、幂、二次根式的运算规律进行解答即可.【详解】解:A.,故A选项错误;B.,故B选项错误;C.,故C选项错误;D.,故D选项正确;故答案为D.【点睛】本题考查了有理数、乘方、幂、二次根式的运算法则,掌握响应的运算法则是解答本题的关键.二、填空题(每题4分,共24分)13、12【解析】根据扇形的弧长等于圆锥底面圆的周长列式进行求解即可.【详解】设这个圆锥的母线长为,依题意,有:,解得:,故答案为:12.【点睛】本题考查了圆锥的运算,正确把握圆锥侧面展开图的扇形的弧长与底面圆的周长间的关系是解题的关键.14、1【分析】利用抛物线与x轴的交点问题得到m2﹣m﹣1=0,则m2﹣m=1,然后利用整体代入的方法计算m2﹣m+5的值.【详解】∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,即m2﹣m=1,∴m2﹣m+5=1+5=1.故答案为:1.【点睛】本题考查了抛物线与x轴的交点:把求二次函数(是常数,)与轴的交点坐标问题转化为解关于的一元二次方程.15、x≥4且x≠1【分析】当表达式的分母中含有自变量时,自变量取值要使分母不为零.当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.据此可得自变量x的取值范围.【详解】解:由题可得,,解得,∴x≥4且x≠1,故答案为:x≥4且x≠1.【点睛】本题主要考查了函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义.16、.【解析】由两个四边形相似,根据相似多边形的对应角相等,即可求得∠A的度数,又由四边形的内角和等于360°,即可求得∠α的度数.【详解】解:∵四边形ABCD∽四边形A′B′C′D′,

∴∠A=∠A′=138°,

∵∠A+∠B+∠C+∠D=360°,

∴∠α=360°-∠A-∠B-∠C=360°-60°-138°-75°==87°.

故答案为87°.【点睛】此题考查了相似多边形的性质.此题比较简单,解题的关键是掌握相似多边形的对应角相等定理的应用.17、1【分析】先利用三角函数解直角三角形,求得AC=20,再根据勾股定理即可求解.【详解】解:∵在直角三角形ABC中,∠B=90°,cosA=,AB=12,∴cosA===,∴AC=20,∴BC===1.故答案是:1.【点睛】此题主要考查勾股定理、锐角三角函数的定义,正确理解锐角三角函数的定义是解题关键.18、0.8【分析】根据平均数是5,求m值,再根据方差公式计算,方差公式为:(表示样本的平均数,n表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,,6,6,∴,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.三、解答题(共78分)19、(1)见解析(2)AF=2【详解】(1)证明:∵四边形ABCD是平行四边形∴AD∥BCAB∥CD∴∠ADF=∠CED∠B+∠C=180°∵∠AFE+∠AFD=,∠AFE=∠B∴∠AFD=∠C∴△ADF∽△DEC(2)解:∵四边形ABCD是平行四边形∴AD∥BCCD=AB=4又∵AE⊥BC∴AE⊥AD在Rt△ADE中,DE=∵△ADF∽△DEC∴∴∴AF=20、(1)(3,4);(2)或;(3)m的取值范围是或.【分析】(1)根据点C到x轴、y轴的距离解答即可;(2)根据“坐标轴三角形”的定义求出线段DF和EF,然后根据三角形的面积公式求解即可;(3)根据题意可得:符合题意的直线MN应为y=x+b或y=-x+b.①当直线MN为y=x+b时,结合图形可得直线MN平移至与⊙O相切,且切点在第四象限时,b取得最小值,根据等腰直角三角形的性质和勾股定理可求得b的最小值,进而可得m的最大值;当直线MN平移至与⊙O相切,且切点在第二象限时,b取得最大值,根据等腰直角三角形的性质和勾股定理可求得b的最大值,进而可得m的最小值,可得m的取值范围;②当直线MN为y=-x+b时,同①的方法可得m的另一个取值范围,问题即得解决.【详解】解:(1)根据题意作图如下:由图可知:点C到x轴距离为4,到y轴距离为3,∴C(3,4);故答案为:(3,4);(2)∵点D(2,1),点E(e,4),点D,E,F的“坐标轴三角形”的面积为3,∴,,∴,即=2,解得:e=4或e=0;(3)由点N,M,G的“坐标轴三角形”为等腰三角形可得:直线MN为y=x+b或y=-x+b.①当直线MN为y=x+b时,由于点M的坐标为(m,4),可得m=4-b,由图可知:当直线MN平移至与⊙O相切,且切点在第四象限时,b取得最小值.此时直线MN记为M1N1,其中N1为切点,T1为直线M1N1与y轴的交点.∵△ON1T1为等腰直角三角形,ON=,∴,∴b的最小值为-3,∴m的最大值为m=4-b=7;当直线MN平移至与⊙O相切,且切点在第二象限时,b取得最大值.此时直线MN记为M2N2,其中N2为切点,T2为直线M2N2与y轴的交点.∵△ON2T为等腰直角三角形,ON2=,∴,∴b的最大值为3,∴m的最小值为m=4-b=1,∴m的取值范围是;②当直线MN为y=-x+b时,同理可得,m=b-4,当b=3时,m=-1;当b=-3时,m=-7;∴m的取值范围是.综上所述,m的取值范围是或.【点睛】本题是新定义概念题,主要考查了三角形的面积、直线与圆相切的性质、等腰三角形的性质和勾股定理等知识,正确理解题意、灵活应用数形结合的思想和分类讨论思想是解题的关键.21、(1)2x;(50-x);(2)每件商品降价1元,商场可日盈利2400元;(3)商场日盈利的最大值为2450元.【分析】(1)降价1元,可多售出2件,降价x元,可多售出2x件,盈利的钱数=原来的盈利−降低的钱数;(2)根据日盈利=每件商品盈利的钱数×(原来每天销售的商品件数40+2×降价的钱数),列出方程求解即可;(3)求出(2)中函数表达式的顶点坐标的横坐标即可解决问题.【详解】(1)商场日销售量增加2x件,每件商品盈利(50−x)元,故答案为:2x;(50−x);(2)由题意得:(50-x)(40+2x)=2400化简得:x2-30x+10=0,即(x-10)(x-1)=0,解得:x1=10,x2=1,∵该商场为了尽快减少库存,∴降的越多,越吸引顾客,∴x=1.答:每件商品降价1元,商场可日盈利2400元.(3)

y=

(50-x)×(40+2x)

=-2(x-15)2

+2450

当x=15时,y最大值=2450即商场日盈利的最大值为2450元.【点睛】此题主要考查了二次函数的应用;得到日盈利的等量关系是解决本题的关键.22、(1);(2)时,线段有最大值.最大值是;(3)时,的面积有最大值,最大值是,此时点的坐标为.【分析】(1)将点的坐标代入二次函数表达式,即可求解;(2)设,则,由得出比例线段,可表示的长,利用二次函数的性质可求出线段的最大值;(3)过点作轴交于点,由即可求解.【详解】解:(1))∵抛物线经过,,把两点坐标代入上式,,解得:,故抛物线函数关系表达式为;(2)∵,点,∴,∵正方形中,,∴,,∴,又∵,∴,∴,设,则,∴,∴,∵,∴时,线段长有最大值,最大值为.即时,线段有最大值.最大值是.(3)存在.如图,过点作轴交于点,∵抛物线的解析式为,∴,∴点坐标为,设直线的解析式为,∴,∴,∴直线的解析式为,设,则,∴,∴,∵,∴时,的面积有最大值,最大值是,此时点的坐标为.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质,会利用相似比表示线段之间的关系.利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度是解题的关键.23、(1),;(1)P'在一次函数图象上.【分析】(1)把点的坐标代入反比例函数和一次函数的一般式即可求出函数解析式.

(1)首先根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,求出点P(-1,5)关于x轴的对称点P′的坐标,再代入一次函数解析式,看看是否满足解析式,满足则在一次函数y=kx+m的图象上,反之则不在.【详解】解:(1)∵经过点(1,1),∴k=1.∵一次函数的图象经过(1,1),∴1=1×1+m∴m=-3,∴反比例函数解析式为,一次函数解析式为.(1)∵P(-1,5)关于x轴的对称点P'坐标为(-1,-5),∴把x=-1代入,得:y=-5,∴P'在一次函数图象上.【点睛】此题主要考查了待定系数法求反比例函数解析式以及待定系数法求一次函数解析式,关键是把握住凡是图象经过的点都能满足解析式.24、(1)见解析;(2)D(,+2);(3).【分析】(1)连接PA,先求出点A和点B的坐标,从而求出OA、OB、OP和AP的长,即可确定点A在圆上,根据相似三角形的判定定理证出△AOB∽△POA,根据相似三角形的性质和等量代换证出PA⊥AB,即可证出结论;(2)连接PA,PD,根据切线长定理可求出∠ADP=∠PDC=∠ADC=60°,利用锐角三角函数求出AD,设D(m,m+2),根据平面直角坐标系中任意两点之间的距离公式求出m的值即可;(3)在BA上取一点J,使得BJ=,连接BG,OJ,JG,根据相似三角形的判定定理证出△BJG∽△BGA,列出比例式可得GJ=AG,从而得出AG+OG=GJ+OG,设J点的坐标为(n,n+2),根据平面直角坐标系中任意两点之间的距离公式求出n,从而求出OJ的长,然后根据两点之间线段最短可得GJ+OG≥OJ,即可求出结论.【详解】(1)证明:如图1中,连接PA.∵一次函数y=x+2的图象与y轴交于A点,与x轴交于B点,∴A(0,2),B(﹣4,0),∴OA=2,OB=4,∵P(1,0),∴OP=1,∴OA2=OB•OP,AP=∴=,点A在圆上∵∠AOB=∠AOP=90°,∴△AOB∽△POA,∴∠OAP=∠ABO,∵∠OAP+∠APO=90°,∴∠ABO+∠APO=90°,∴∠BAP=90°,∴PA⊥AB,∴AB是⊙P的切线.(2)如图1﹣1中,连接PA,PD.∵DA,DC是⊙P的切线,∠ADC=120°,∴∠ADP=∠PDC=∠ADC=60°,∴∠APD=30°,∵∠PAD=90°∴AD=PA•tan30°=,设D(m,m+2),∵A(0,2),∴m2+(m+2﹣2)2=,解得m=±,∵点D在第一象限,∴m=,∴D(,+2).(3)在BA上取一点J,使得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论