




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.关于x的一元二次方程2x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A.﹣1 B.﹣3 C.5 D.12.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是()A.110 B.19 C.13.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②=PB•EF;③PF•EF=2;④EF•EP=4AO•PO.其中正确的是()A.①②③ B.①②④ C.①③④ D.③④4.若函数y=的图象在第一、三象限内,则m的取值范围是()A.m>﹣3 B.m<﹣3 C.m>3 D.m<35.如图,在矩形中,对角线与相交于点,,垂足为点,,且,则的长为()A. B. C. D.6.正方形具有而菱形不具有的性质是()A.对角线互相平分 B.对角线相等C.对角线平分一组对角 D.对角线互相垂直7.如图,△ABC中,AB=AC,∠ABC=70°,点O是△ABC的外心,则∠BOC的度数为()A.40° B.60° C.70° D.80°8.用直角三角板检查半圆形的工件,下列工件合格的是()A. B.C. D.9.若关于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,则m的取值范围是()A.m≠2 B.m=2 C.m≥2 D.m≠010.下列图形中,不是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.在平面直角坐标系中,已知、两点,以坐标原点为位似中心,相似比为,把线段缩小后得到线段,则的长度等于________.12.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.13.如果点A(2,﹣4)与点B(6,﹣4)在抛物线y=ax2+bx+c(a≠0)上,那么该抛物线的对称轴为直线_____.14.如图,四边形是的内接四边形,若,则的大小为________.15.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为_____.16.如图,有九张分别印有如下车标的卡片(卡片中除图案不同外,其余均相同)现将带图案的一面朝下摆放,从中任意抽取一张,抽到的是中心对称图形车标卡片的概率是_______.17.某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为,六月份的营业额为万元,那么关于的函数解式是______.18.如图,在半径为的中,的长为,若随意向圆内投掷一个小球,小球落在阴影部分的概率为______________.三、解答题(共66分)19.(10分)某校为了解节能减排、垃圾分类等知识的普及情况,从该校2000名学生中随机抽取了部分学生进行调查,调查结果分为“非常了解”、“了解”、“了解较少”、“不了解”四类,并将调查结果绘制成如图所示两幅不完整的统计图,请根据统计图回答下列问题:(1)补全条形统计图并填空,本次调查的学生共有名,估计该校2000名学生中“不了解”的人数为.(2)“非常了解”的4人中有A1、A2两名男生,B1、B2两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图或列表的方法,求恰好抽到两名男生的概率.20.(6分)如图,在△ABC中,点D在BC上,CD=CA,CF平分∠ACB,AE=EB,求证:EF=BD21.(6分)如图,在△ABC中,∠C=90°,AC=6cm,BC=8m,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从点C出发沿CB边向点B以2cm/s的速度移动,当其中一点到达终点时,另一点也随之停止运动.(1)如果点P,Q同时出发,经过几秒钟时△PCQ的面积为8cm2?(2)如果点P,Q同时出发,经过几秒钟时以P、C、Q为顶点的三角形与△ABC相似?22.(8分)如图,河流两岸PQ,MN互相平行,C、D是河岸PQ上间隔50m的两个电线杆,某人在河岸MN上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF=70°,求河流的宽度(结果精确到个位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)23.(8分)如图,一条公路的转弯处是一段圆弧.用直尺和圆规作出所在圆的圆心O(要求保留作图痕迹,不写作法);24.(8分)有一辆宽为的货车(如图①),要通过一条抛物线形隧道(如图②).为确保车辆安全通行,规定货车车顶左右两侧离隧道内壁的垂直高度至少为.已知隧道的跨度为,拱高为.(1)若隧道为单车道,货车高为,该货车能否安全通行?为什么?(2)若隧道为双车道,且两车道之间有的隔离带,通过计算说明该货车能够通行的最大安全限高.25.(10分)如图,AB为⊙O的直径,C为⊙O上一点,过点C做⊙O的切线,与AE的延长线交于点D,且AD⊥CD.(1)求证:AC平分∠DAB;(2)若AB=10,CD=4,求DE的长.26.(10分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)画出关于原点对称的;(2)将绕顺时针旋转,画出旋转后得到的,并直接写出此过程中线段扫过图形的面积.(结果保留)
参考答案一、选择题(每小题3分,共30分)1、D【分析】把x=﹣1代入方程2x2﹣mx﹣3=0得到2+m﹣3=0,然后解关于m的方程即可.【详解】把x=﹣1代入方程2x2﹣mx﹣3=0得2+m﹣3=0,解得m=1.故选D.【点睛】本题考查了一元二次方程的解,熟知能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解决问题的关键.2、A【解析】试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码)=,故答案选A.考点:概率.3、B【解析】由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设AD=x,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E为DC的中点,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正确∵∠F=30°,∴PF=2PB=x,过点E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③错误.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.4、C【分析】根据反比例函数的性质得m﹣1>0,然后解不等式即可.【详解】解:根据题意得m﹣1>0,解得m>1.故选:C.【点睛】本题主要考查的是反比例函数的性质,当k>0时,图像在第一、三象限内,根据这个性质即可解出答案.5、C【分析】由矩形的性质得到:设利用勾股定理建立方程求解即可得到答案.【详解】解:矩形,设则,(舍去)故选C.【点睛】本题考查的是矩形的性质,勾股定理,掌握以上知识点是解题的关键.6、B【分析】根据正方形和菱形的性质逐项分析可得解.【详解】根据正方形对角线的性质:平分、相等、垂直;菱形对角线的性质:平分、垂直,故选B.【点睛】考点:1.菱形的性质;2.正方形的性质.7、D【分析】首先根据等腰三角形的性质可得∠A的度数,然后根据圆周角定理可得∠O=2∠A,进而可得答案.【详解】解:∵AB=AC,
∴∠ABC=∠ACB=70°,
∴∠A=180°−70°×2=40°,
∵点O是△ABC的外心,
∴∠BOC=40°×2=80°,
故选:D.【点睛】此题主要考查了三角形的外接圆和外心,关键是掌握圆周角定理:在同圆或等圆中,同弧所对的圆周角等于圆心角的一半.8、C【分析】根据直径所对的圆周角是直角逐一判断即可.【详解】解:A、直角未在工件上,故该工件不是半圆,不合格,故A错误;B、直角边未落在工件上,故该工件不是半圆,不合格,故B错误;C、直角及直角边均落在工件上,故该工件是半圆,合格,故C正确;D、直角边未落在工件上,故该工件不是半圆,不合格,故D错误,故答案为:C.【点睛】本题考查了直径所对的圆周角是直角的实际应用,熟知直径所对的圆周角是直角是解题的关键.9、A【解析】解:∵关于x的方程(m﹣1)x1+mx﹣1=0是一元二次方程,∴m-1≠0,解得:m≠1.故选A.10、A【详解】解:根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误.故选A.二、填空题(每小题3分,共24分)11、【分析】已知A(6,2)、B(6,0)两点则AB=2,以坐标原点O为位似中心,相似比为,则A′B′:AB=2:2.即可得出A′B′的长度等于2.【详解】∵A(6,2)、B(6,0),∴AB=2.又∵相似比为,∴A′B′:AB=2:2,∴A′B′=2.【点睛】本题主要考查位似的性质,位似比就是相似比.12、-1【分析】根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0,求出m的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.13、x=4【解析】根据函数值相等的点到抛物线对称轴的距离相等,可由点A(1,-4)和点B(6,-4)都在抛物线y=ax²+bx+c的图象上,得到其对称轴为x==1.故答案为x=4.14、100°【分析】根据圆内接四边形的性质求出∠D的度数,根据圆周角定理计算即可.【详解】∵四边形ABCD是⊙O的内接四边形,
∴∠B+∠D=180°,
∴∠D=180°-130°=50°,
由圆周角定理得,∠AOC=2∠D=100°,
故答案是:100°.【点睛】考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补、同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.15、-1.【解析】分析:先把x=0代入方程求出a的值,然后根据二次项系数不能为0,把a=1舍去.
详解:把x=0代入方程得:
|a|-1=0,
∴a=±1,
∵a-1≠0,
∴a=-1.
故选A.
点睛:本题考查的是一元二次方程的解,把方程的解代入方程得到a的值,再由二次项系数不为0,确定正确的选项.16、【分析】首先判断出是中心对称图形的有多少张,再利用概率公式可得答案.【详解】共有9张卡片,是中心对称图形车标卡片是第2张,则抽到的是中心对称图形车标卡片的概率是,故答案为:.【点睛】此题主要考查了概率公式和中心对称图形,关键是掌握随机事件A的概率P(A)=.17、或【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可先用x表示出五月份的营业额,再根据题意表示出六月份的营业额,即可列出方程求解.【详解】解:设增长率为x,则五月份的营业额为:,六月份的营业额为:;故答案为:或.【点睛】本题考查了一元二次方程的应用中增长率问题,若原来的数量为a,平均每次增长或降低的百分率为x,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)1.增长用“+”,下降用“”.18、【分析】根据圆的面积公式和扇形的面积公式分别求得各自的面积,再根据概率公式即可得出答案.【详解】∵圆的面积是:,扇形的面积是:,∴小球落在阴影部分的概率为:.故答案为:.【点睛】本题主要考查了几何概率问题,用到的知识点为:概率=相应面积与总面积之比.三、解答题(共66分)19、(1)图详见解析,50,600;(2).【分析】(1)由“非常了解”的人数及其所占百分比求得总人数,继而由各了解程度的人数之和等于总人数求得“不了解”的人数,用总人数乘以样本中“不了解”人数所占比例可得;(2)分别用树状图和列表两种方法表示出所有等可能结果,从中找到恰好抽到2名男生的结果数,利用概率公式计算可得.【详解】解:(1)本次调查的学生总人数为4÷8%=50人,则不了解的学生人数为50﹣(4+11+20)=15人,∴估计该校2000名学生中“不了解”的人数约有2000×=600人,补图如下:故答案为:50、600;(2)画树状图如下:共有12种可能的结果,恰好抽到2名男生的结果有2个,∴P(恰好抽到2名男生)==.【点睛】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.20、见解析【解析】试题分析:由等腰三角形三线合一得FA=FD.又由E是中点,所以EF是中位线,即得结论.∵CD=CA,CF平分∠ACB,∴FA=FD(三线合一),∵FA=FD,AE=EB,∴EF=BD.考点:本题考查的是等腰三角形的性质,三角形的中位线点评:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.21、(1)1s或2s;(1)当t=或t=时,以P、C、Q为顶点的三角形与△ABC相似.【分析】(1)设P、Q同时出发,x秒钟后,AP=xcm,PC=(6﹣x)cm,CQ=1xcm,依据△PCQ的面积为8,由此等量关系列出方程求出符合题意的值.(1)分两种情况讨论,依据相似三角形对应边成比例列方程求解即可.【详解】(1)设xs后,可使△PCQ的面积为8cm1.由题意得,AP=xcm,PC=(6﹣x)cm,CQ=1xcm,则(6﹣x)•1x=8,整理得x1﹣6x+8=0,解得x1=1,x1=2.所以P、Q同时出发,1s或2s后可使△PCQ的面积为8cm1.(1)设t秒后以P、C、Q为顶点的三角形与△ABC相似,则PC=6﹣t,QC=1t.当△PCQ∽△ACB时,=,即=,解得:t=.当△PCQ∽△BCA时,=,即=,解得:t=.综上所述,当t=或t=时,以P、C、Q为顶点的三角形与△ABC相似.【点睛】本题考查一元二次方程的应用,三角形的面积公式的求法和一元二次方程的解的情况.关键在于读懂题意,找出之间的等量关系,列出方程求解.22、河流的宽度CF的值约为37m.【分析】过点C作CE∥AD,交AB于点E,则四边形AECD是平行四边形,利用平行四边形的性质可得出AE、EB及∠CEF的值,通过解直角三角形可得出EF,BF的长,结合EF﹣BF=50m,即可求出CF的长.【详解】如图,过点C作CE∥AD,交AB于点E,∵CD∥AE,CE∥AD,∴四边形AECD是平行四边形,∵CD=50m,AB=100m,∴AE=CD=50m,EB=AB﹣AE=50m,∠CEF=∠DAB=30°.在Rt△ECF中,EF==CF,∵∠CBF=70°,∴在Rt△BCF中,BF=,∵EF﹣BF=50m,∴CF﹣=50,∴CF≈37m.答:河流的宽度CF的值约为37m.【点睛】本题主要考查了解直角三角形的应用,不规则图形可以通过作平行线转化为平行四边形与直角三角形的问题进行解决,熟练掌握三角函数的定义是解题关键.23、见解析.【分析】根据垂径定理的推论可知:弦的垂直平分线过圆心,只需连接AC、BC,尺规作线段AC和BC的垂直平分线,其交点即为所求.【详解】解:如图所示:圆心O即为圆弧所在圆的圆心.【点睛】本题考查了尺规作线段的垂直平分线和垂径定理,属于基础题型,熟练掌握垂径定理和线段垂直平分线的尺规作图是关键.24、(1)货车能安全通行,理由见解析;(2)最大安全限高为2.29米【分析】(1)根据跨度求出点B的坐标,然后设抛物线顶点式形式y=ax2+4,然后把点B的坐标代入求出a的值,即可得解;
(2)根据车的宽度为2,求出x=2.2时的函数值,再根据限高求出货车的最大限制高度即可.【详解】(1)货车能安全通行.∵隧道跨度为8米,隧道的顶端坐标为(O,4),
∴A、B关于y轴对称,
∴OA=OB=AB=×8=4,
∴点B的坐标为(4,0),
设抛物线顶点式形式y=ax2+4,
把点B坐标代入得,16a+4=0,
解得a=-,
所以,抛物线解析式为y=-x2+4(-4≤x≤4);由可得,.∵,∴货车能够安全通行.答:货车能够安全通行.
(2)当时,=2.1.∵,∴货车能够通行的最大安全限高为2.29米.答:货车能够通行的最大安全限高为2.29米.【点睛】本题考查了二次函数的应用,主要利用了二次函数的图象的对称性,待定系数法求二次函数解析式,以及二次函数图象上点的坐标特征,比较简单.25、(1)见解析;(1)DE=1【分析】(1)连接OC,利用切线的性质可得出OC∥AD,再根据平行线的性质得出∠DAC=∠OCA,又因为∠OCA=∠OAC,继而可得出结论;(1)方法一:连接BE交OC于点H,可证明四边形EHCD为矩形,再根据垂径定理可得出,得出,从而得出,再通过三角形中位线定理可得出,继而得出结论;方法二:连接BC、EC,可证明△ADC∽△ACB,利用相似三角形的性质可得出AD=8,再证△DEC∽△DCA,从而可得出结论;方法三:连接BC、EC,过点C做CF⊥AB,垂足为F,利用已知条件得出OF=3,再证明△DEC≌△CFB,利用全等三角形的性质即可得出答案.【详解】解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度商铺租赁合同终止及市场租金指数挂钩协议
- 2025年度股东股份协议书:智慧城市建设项目股权分配及合作协议
- 自建房安全质量监督承包协议书(2025年度)
- 农村自建房建筑工程保险合同(2025年度)
- 二零二五年度教育机构学费返利合同
- 二零二五年度高端基金份额代持保密协议书
- 2025年度砖厂安全生产承包管理合同
- 二零二五年度汽修厂汽车维修技师职业健康检查合同
- 2025年度烟草店店铺转让与独家销售区域授权合同
- 2025年度水平定向钻施工与施工期环境保护合同
- (完整版)数字电子技术基础教案
- 小回沟矿井3.0Mt-a新建工程变更项目环评
- 汽车维修合同管理制度
- 2024中交二航局分包合同范本
- 2024年益阳医学高等专科学校单招职业适应性测试题库全面
- 2024年四川电力职业技术学院单招职业适应性测试题库新版
- (完整)低压配电柜技术规范
- 2024年注册安全工程师考试题库【含答案】
- 第2课《树立科学的世界观》第2框《用科学世界观指导人生发展》-【中职专用】《哲学与人生》同步课堂课件
- 南航航空安全员培训
- 焊接基础知识:焊接的缺陷及检验方法
评论
0/150
提交评论