版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图为4×4的正方形网格,A,B,C,D,O均在格点上,点O是()A.△ACD的外心 B.△ABC的外心 C.△ACD的内心 D.△ABC的内心2.下列二次根式中,与是同类二次根式的是A. B. C. D.3.关于抛物线y=-3(x+1)2﹣2,下列说法正确的是()A.开口方向向上 B.顶点坐标是(1,2)C.当x<-1时,y随x的增大而增大 D.对称轴是直线x=14.反比例函数y=kx(k≠0)的图象经过点(2,-4),若点(4,n)在反比例函数的图象上,则n等于A.﹣8 B.﹣4 C.﹣18 D.﹣5.如图,在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于()A.5∶8 B.3∶8 C.3∶5 D.2∶56.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,在随机摸出一个球,两次都摸到黑球的概率是()A. B. C. D.7.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为A.12 B.9 C.6 D.48.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个 B.2个 C.3个 D.4个9.为了测量某沙漠地区的温度变化情况,从某时刻开始记录了12个小时的温度,记时间为(单位:)温度为(单位:).当时,与的函数关系是,则时该地区的最高温度是()A. B. C. D.10.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A. B. C. D.11.若点A(-3,m),B(3,m),C(-1,m+n²+1)在同一个函数图象上,这个函数可能是()A.y=x+2 B. C.y=x²+2 D.y=-x²-212.如图,在中,弦AB=12,半径与点P,且P为的OC中点,则AC的长是()A. B.6 C.8 D.二、填空题(每题4分,共24分)13.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米精确到1米14.若x1,x2是一元二次方程2x2+x-3=0的两个实数根,则x1+x2=____.15.如图,反比例函数y=(x>0)经过A,B两点,过点A作AC⊥y轴于点C,过点B作BD⊥y轴于点D,过点B作BE⊥x轴于点E,连接AD,已知AC=1,BE=1,S△ACD=,则S矩形BDOE=______.16.如图,AC为圆O的弦,点B在弧AC上,若∠CBO=58°,∠CAO=20°,则∠AOB的度数为___________17.如果,那么=.18.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.三、解答题(共78分)19.(8分)先化简再求值:其中.20.(8分)解下列方程:(1)x2+2x﹣3=0;(2)x(x﹣4)=12﹣3x.21.(8分)已知为的外接圆,点是的内心,的延长线交于点,交于点.(1)如图1,求证:.(2)如图2,为的直径.若,求的长.22.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.求出每天的销售利润元与销售单价元之间的函数关系式;求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?每天的总成本每件的成本每天的销售量23.(10分)如图,在锐角△ABC中,小明进行了如下的尺规作图:①分别以点A、B为圆心,以大于12AB的长为半径作弧,两弧分别相交于点P、Q②作直线PQ分别交边AB、BC于点E、D.(1)小明所求作的直线DE是线段AB的;(2)联结AD,AD=7,sin∠DAC=17,BC=9,求AC24.(10分)如图,某农户计划用长12m的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7m.(1)若生物园的面积为9m2,则这个生物园垂直于墙的一边长为多少?(2)若要使生物园的面积最大,该怎样围?25.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.(1)求证:BE=EC(2)填空:①若∠B=30°,AC=2,则DE=______;②当∠B=______度时,以O,D,E,C为顶点的四边形是正方形.26.如图,点在轴正半轴上,点是反比例函数图象上的一点,且.过点作轴交反比例函数图象于点.(1)求反比例函数的表达式;(2)求点的坐标.
参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:由图可得:OA=OB=OC=,所以点O在△ABC的外心上,故选B.2、C【分析】根据同类二次根式的定义即可判断.【详解】A.=,不符合题意;B.,不符合题意;C.=,符合题意;D.=,不符合题意;故选C.【点睛】此题主要考查同类二次根式的识别,解题的关键是熟知二次根式的性质进行化简.3、C【分析】根据抛物线的解析式得出抛物线的性质,从而判断各选项.【详解】解:∵抛物线y=-3(x+1)2﹣2,
∴顶点坐标是(-1,-2),对称轴是直线x=-1,根据a=-3<0,得出开口向下,当x<-1时,y随x的增大而增大,
∴A、B、D说法错误;
C说法正确.
故选:C.【点睛】本题主要考查对二次函数的性质的理解和掌握,能熟练地运用二次函数的性质进行判断是解此题的关键.4、D【解析】利用反比例函数图象上点的坐标特征得到4n=1×(-4),然后解关于n的方程即可.【详解】∵点(1,-4)和点(4,n)在反比例函数y=kx∴4n=1×(-4),∴n=-1.故选D.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k5、A【解析】∵DE∥BC,EF∥AB,∴,,∴,∴,∴,即.故选A.点睛:若,则,.6、A【详解】解:画树状图得:∵共有4种等可能的结果,两次都摸到黑球的只有1种情况,∴两次都摸到黑球的概率是.故选A.7、B【解析】∵点,是中点∴点坐标∵在双曲线上,代入可得∴∵点在直角边上,而直线边与轴垂直∴点的横坐标为-6又∵点在双曲线∴点坐标为∴从而,故选B8、C【解析】试题分析:由题意画出图形,在一个平面内,不在同一条直线上的三点,与D点恰能构成一个平行四边形,符合这样条件的点D有3个.故选C.考点:平行四边形的判定9、D【分析】利用配方法求最值.【详解】解:∵a=-1<0∴当t=5时,y有最大值为36故选:D【点睛】本题考查配方法求最值,掌握配方法的方法正确计算是本题的解题关键.10、B【分析】设扇形的半径为r.利用弧长公式构建方程求出r,再利用扇形的面积公式计算即可.【详解】解:设扇形的半径为r.由题意:=6π,∴r=9,∴S扇形==27π,故选B.【点睛】本题考查扇形的弧长公式,面积公式等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.11、D【分析】先根据点A、B的坐标可知函数图象关于y轴对称,排除A、B选项;再根据点C的纵坐标大于点A的纵坐标,结合C、D选项,根据y随x的增减变化即可判断.【详解】函数图象关于y轴对称,因此A、B选项错误又再看C选项,的图象性质:当时,y随x的增大而减小,因此错误D选项,的图象性质:当时,y随x的增大而增大,正确故选:D.【点睛】本题考查了二次函数图象的性质,掌握图象的性质是解题关键.12、D【分析】根据垂径定理求出AP,连结OA根据勾股定理构造方程可求出OA、OP,再求出PC,最后根据勾股定理即可求出AC.【详解】解:如图,连接OA,∵AB=12,OC⊥AB,OC过圆心O,∴AP=BP=AB=6,∵P为的OC中点,设⊙O的半径为2R,即OA=OC=2R,则PO=PC=R,在Rt△OPA中,由勾股定理得:AO2=OP2+AP2,即:(2R)2=R2+62,解得:R=,即OP=PC=,在Rt△CPA中,由勾股定理得:AC2=AP2+PC2,即AC2=62+解得:AC=故选:D.【点睛】本题考查了垂径定理和勾股定理,能根据垂径定理求出AP的长是解此题的关键.二、填空题(每题4分,共24分)13、【解析】由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有,即,,.所以两盏警示灯之间的水平距离为:14、【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=,x1•x2=.15、1【分析】根据三角形的面积求出CD,OC,进而确定点A的坐标,代入求出k的值,矩形BDOE的面积就是|k|,得出答案.【详解】∵AC=1,S△ACD=,∴CD=3,∵ODBE是矩形,BE=1,∴OD=1,OC=OD+CD=1,∴A(1,1)代入反比例函数关系式得,k=1,∴S矩形BDOE=|k|=1,故答案为:1.【点睛】本题考查了反比例函数的几何问题,掌握反比例函数的性质以及三角形的面积公式是解题的关键.16、76°【分析】如图,连接OC.根据∠AOB=2∠ACB,求出∠ACB即可解决问题.【详解】如图,连接OC.∵OA=OC=OB,∴∠A=∠OCA=20°,∠B=∠OCB=58°,∴∠ACB=∠OCB−∠OCA=58°−20°=38°,∴∠AOB=2∠ACB=76°,故答案为76°.【点睛】本题考查等腰三角形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17、【解析】试题分析:本题主要考查的就是比的基本性质.根据题意可得:=+=+1=+1=.18、12﹣4【详解】试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=,∴∠AOE=45°,ED=1,∴AE=EO=,DO=﹣1,∴S正方形DNMF=2(﹣1)×2(﹣1)×=8﹣4,S△ADF=×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣4=12﹣4.故答案为12﹣4.考点:1、旋转的性质;2、菱形的性质.三、解答题(共78分)19、【解析】先将多项式进行因式分解,根据分式的加减乘除混合运算法则,先对括号里的进行通分,再将除法转化为乘法,约分化简即可.【详解】解:原式,当时,原式.【点睛】本题主要考查了分式的加减乘除混合运算,熟练应用分式的基本性质进行约分和通分是解题的关键.20、(1)x=﹣1或x=1;(2)x=4或x=﹣1.【分析】(1)利用因式分解法求解可得;(2)利用因式分解法求解可得.【详解】解:(1)∵x2+2x﹣1=0,∴(x+1)(x﹣1)=0,则x+1=0或x﹣1=0,解得x=﹣1或x=1;(2)∵x(x﹣4)+1(x﹣4)=0,∴(x﹣4)(x+1)=0,则x﹣4=0或x+1=0,解得x=4或x=﹣1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21、(1)证明见解析;(2)【分析】(1)连接半径,根据内心的性质、圆的基本性质以及三角形外角的性质求得,即可得证结论;(2)连接半径,由为的直径、点是的内心以及等腰三角形的三线合一可得、,然后依次解、即可得出结论.【详解】解:(1)证明:连接,如图:∵是的内心∴,∵∴∴∵∴(2)连接,如图:∵是直径,平分∴且∵,,∴在中,∴∴∵∴∴在中,∴由(1)可知,∴.故答案是:(1)证明见解析;(2)【点睛】本题考查了三角形内心的性质、圆的一些基本性质、三角形外角的性质、等腰三角形的性质、垂径定理、锐角三角函数以及勾股定理等知识点,难度不大,属于中档题型.22、;当时,;销售单价应该控制在82元至90元之间.【分析】(1)根据每天销售利润=每件利润×每天销售量,可得出函数关系式;(2)将(1)的关系式整理为顶点式,根据二次函数的顶点,可得到答案;(3)先求出利润为4000元时的售价,再结合二次函数的增减性可得出答案.【详解】解:由题意得:;,抛物线开口向下.,对称轴是直线,当时,;当时,,解得,.当时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得,解得.,,销售单价应该控制在82元至90元之间.【点睛】本题考查二次函数的应用,熟练掌握二次函数的图像与性质是解题的关键.23、(1)线段AB的垂直平分线(或中垂线);(2)AC=53.【解析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=17,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长【详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DF⊥AC,垂足为点F,如图,∵DE是线段AB的垂直平分线,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=DFAD∴DF=1,在Rt△ADF中,AF=72在Rt△CDF中,CF=22∴AC=AF+CF=43【点睛】本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.24、(1)3m;(1)生物园垂直于墙的一边长为1m.平行于墙的一边长为6m时,围成生物园的面积最大,且为11m1【分析】(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(11-3x)米,根据长方形的面积公式结合生物园的面积为9平方米,列出方程,解方程即可;(1)设围成生物园的面积为y,由题意可得:y=x(11﹣3x)且≤<4,从而求出y的最大值即可.【详解】设这个生物园垂直于墙的一边长为xm,(1)由题意,得x(11﹣3x)=9,解得,x1=1(不符合题意,舍去),x1=3,答:这个生物园垂直于墙的一边长为3m;(1)设围成生物园的面积为ym1.由题意,得,∵∴≤<4∴当x=1时,y最大值=11,11﹣3x=6,答:生物园垂直于墙的一边长为1m.平行于墙的一边长为6m时,围成生物园的面积最大,且为11m1.【点睛】本题主要考查一元二次方程的应用和二次函数的应用,解题的关键是正确解读题意,根据题目给出的条件,准确列出方程和二次函数解析式.25、(1)见解析;(2)①3;②1.【分析】(1)证出EC为⊙O的切线;由切线长定理得出EC=ED,再求得EB=ED,即可得出结论;(2)①由含30°角的直角三角形的性质得出AB,由勾股定理求出BC,再由直角三角形斜边上的中线性质即可得出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水上乐园建设室外施工合同
- 冶金行业定价管理办法
- 停职留薪协议书范本
- 火车站单元门定制安装合同
- 企业融资保理操作指南
- 建筑工程机械施工合同
- 教育培训机构资金引入指南
- 教育论坛活动免责承诺书
- 文化传媒劳务招投标管理规定
- 城市快速路路灯设施安装合同
- NB-T 10435-2020 电动汽车快速更换电池箱锁止机构通.用技术要求
- 03SG610-1建筑结构隔震构造详图
- 软木底生产工艺流程
- 高边坡专项施工方案专家已评审
- 氧气吸入操作评分标准(中心供氧)
- 2024年深圳公司试用期员工劳动合同范文(二篇)
- QBT 102T-2023 甜菜糖厂设计规范 (正式版)
- 气体分析实验室操作规程
- 2023年上海市闵行区中考二模语文试卷含详解
- 2024年中考道德与法治三轮复习:综合探究题 练习题(含答案)
- 高等学校教师岗前培训考试暨教师资格笔试题库及答案(易错题)
评论
0/150
提交评论