




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知正比例函数y1的图象与反比例函数y2图象相交于点A(2,4),下列说法正确的是(A.反比例函数y2的解析式是B.两个函数图象的另一交点坐标为(2,-4)C.当x<-2或0<x<2时,yD.正比例函数y1与反比例函数y2都随2.如图,在平面直角坐标系中,正方形的顶点在坐标原点,点的坐标为,点在第二象限,且反比例函数的图像经过点,则的值是()A.-9 B.-8 C.-7 D.-63.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是()A. B. C. D.104.若是方程的两根,则的值是()A. B. C. D.5.如图,将边长为6的正六边形铁丝框ABCDEF(面积记为S1)变形为以点D为圆心,CD为半径的扇形(面积记为S2),则S1与S2的关系为()A.S1=S2 B.S1<S2 C.S1=S2 D.S1>S26.己知⊙的半径是一元二次方程的一个根,圆心到直线的距离.则直线与⊙的位置关系是A.相离 B.相切 C.相交 D.无法判断7.如图,⊙O中,点D,A分别在劣弧BC和优弧BC上,∠BDC=130°,则∠BOC=()A.120° B.110° C.105° D.100°8.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC.若S△BDE:S△ADE=1:2.则S△DOE:S△AOC的值为()A. B. C. D.9.如图,在直角坐标系中,⊙A的半径为2,圆心坐标为(4,0),y轴上有点B(0,3),点C是⊙A上的动点,点P是BC的中点,则OP的范围是()A. B.2≤OP≤4 C.≤OP≤ D.3≤OP≤410.关于抛物线y=x2+6x﹣8,下列选项结论正确的是()A.开口向下 B.抛物线过点(0,8)C.抛物线与x轴有两个交点 D.对称轴是直线x=311.一元二次方程x2﹣4x+5=0的根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根12.如图,将绕点逆时针旋转70°到的位置,若,则()A.45° B.40° C.35° D.30°二、填空题(每题4分,共24分)13.如图,从外一点引的两条切线、,切点分别是、,若,是弧上的一个动点(点与、两点不重合),过点作的切线,分别交、于点、,则的周长是________.14.若二次函数的对称轴为直线,则关于的方程的解为______.15.当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为▲cm.16.若某斜面的坡度为,则该坡面的坡角为______.17.已知:∠BAC.(1)如图,在平面内任取一点O;(2)以点O为圆心,OA为半径作圆,交射线AB于点D,交射线AC于点E;(3)连接DE,过点O作线段DE的垂线交⊙O于点P;(4)连接AP,DP和PE.根据以上作图过程及所作图形,下列四个结论中:①△ADE是⊙O的内接三角形;②;③DE=2PE;④AP平分∠BAC.所有正确结论的序号是______________.18.如果抛物线经过原点,那么______.三、解答题(共78分)19.(8分)如图,双曲线上的一点,其中,过点作轴于点,连接.(1)已知的面积是,求的值;(2)将绕点逆时针旋转得到,且点的对应点恰好落在该双曲线上,求的值.20.(8分)永祚寺双塔,又名凌霄双塔,是山西省会太原现存古建筑中最高的建筑.位于太原市城区东南向山脚畔.数学活动小组的同学对其中一塔进行了测量.测量方法如下:如图所示,间接测得该塔底部点到地面上一点的距离为,塔的顶端为点,且,在点处竖直放一根标杆,其顶端为,在的延长线上找一点,使三点在同一直线上,测得.(1)方法1,已知标杆,求该塔的高度;(2)方法2,测得,已知,求该塔的高度.21.(8分)(操作发现)如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=____.(问题解决)(3)如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.…请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)22.(10分)如图是某一蓄水池每小时的排水量/与排完水池中的水所用时间之间的函数关系的图像.(1)请你根据图像提供的信息写出此函数的函数关系式;(2)若要6h排完水池中的水,那么每小时的排水量应该是多少?23.(10分)如图,在平面直角坐标系xOy中,直线y=x﹣2与反比例函数y=(k为常数,k≠0)的图象在第一象限内交于点A,点A的横坐标为1.(1)求反比例函数的表达式;(2)设直线y=x﹣2与y轴交于点C,过点A作AE⊥x轴于点E,连接OA,CE.求四边形OCEA的面积.24.(10分)如图,宾馆大厅的天花板上挂有一盏吊灯AB,某人从C点测得吊灯顶端A的仰角为,吊灯底端B的仰角为,从C点沿水平方向前进6米到达点D,测得吊灯底端B的仰角为.请根据以上数据求出吊灯AB的长度.(结果精确到0.1米.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.41,≈1.73)25.(12分)如图方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC向上平移3个单位长度,画出平移后的△A1B1C1;(2)写出A1,C1的坐标;(3)将△A1B1C1绕B1逆时针旋转90°,画出旋转后的△A2B1C2,求线段B1C1在旋转过程中扫过的面积(结果保留π).26.如图,△ABC中∠A=60°,∠B=40°,点D、E分别在△ABC的边AB、AC上,且∠ADE=80°.(1)求证:△AED∽△ABC;(2)若AD=4,AB=8,AE=5,求CE的长.
参考答案一、选择题(每题4分,共48分)1、C【解析】由题意可求正比例函数解析式和反比例函数解析式,由正比例函数和反比例函数的性质可判断求解.【详解】解:∵正比例函数y1的图象与反比例函数y2的图象相交于点∴正比例函数y1=2x∴两个函数图象的另一个角点为(-2,-4)∴A,B选项错误∵正比例函数y1=2x中,y随x的增大而增大,反比例函数y2=8∴D选项错误∵当x<-2或0<x<2时,y∴选项C正确故选:C.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.2、B【分析】作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,-x),根据正方形的性质求得对角线解得F的坐标,即可得出,解方程组求得k的值.【详解】解:如图,作轴于,轴于连接AC,BO,∵,∴∵,∴.在和中,∴∴.设,则.∵和互相垂直平分,点的坐标为,∴交点的坐标为,∴,解得,∴,故选.【点睛】本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,正方形的性质,全等三角形的判定和性质,熟练掌握正方形的性质是解题的关键.3、B【解析】如图,作DH⊥AB于H,CM⊥AB于M.由tanA==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.【详解】如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tanA==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或-2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.故选B.【点睛】本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型.4、D【解析】试题分析:x1+x2=-=6,故选D考点:根与系数的关系5、D【分析】由正六边形的长得到的长,根据扇形面积公式=×弧长×半径,可得结果.【详解】由题意:的长度==24,∴S2=×弧长×半径=×24×6=72,∵正六边形ABCDEF的边长为6,∴为等边三角形,∠ODE=60°,OD=DE=6,过O作OG⊥DE于G,如图:∴,∴,∴S1>S2,故选:D.【点睛】本题考查了正多边形和圆、正六边形的性质、扇形面积公式;熟练掌握正六边形的性质,求出弧长是解决问题的关键.6、A【分析】在判断直线与圆的位置关系时,通常要得到圆心到直线的距离,然后再利用d与r的大小关系进行判断;在直线与圆的问题中,充分利用构造的直角三角形来解决问题,直线与圆的位置关系:①当d>r时,直线与圆相离;②当d=r时,直线与圆相切;③当d<r时,直线与圆相交.【详解】∵的解为x=4或x=-1,∴r=4,∵4<6,即r<d,∴直线和⊙O的位置关系是相离.故选A.【点睛】本题主要考查了直线与圆的位置关系,一元二次方程的定义及一般形式,掌握直线与圆的位置关系,一元二次方程的定义及一般形式是解题的关键.7、D【分析】根据圆内接四边形的性质,对角互补可知,∠D+∠BAC=180°,求出∠D,再利用圆周角定理即可得出.【详解】解:∵四边形ABDC为圆内接四边形∴∠A+∠BDC=180°∵∠BDC=130°∴∠A=50°∴∠BOC=2∠A=100°故选:D.【点睛】本题考查了圆内接四边形的性质,圆周角定理,掌握圆内接四边形的性质是解题的关键.8、B【分析】依次证明和,利用相似三角形的性质解题.【详解】∵,
∴,
∴,
∵∥,∴,∴,
∵∥,∴,∴,
故选:B.【点睛】本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.9、A【分析】如图,在y轴上取点B'(0,﹣3),连接B'C,B'A,由勾股定理可求B'A=5,由三角形中位线定理可求B'C=2OP,当点C在线段B'A上时,B'C的长度最小值=5﹣2=3,当点C在线段B'A的延长线上时,B'C的长度最大值=5+2=7,即可求解.【详解】解:如图,在y轴上取点B'(0,﹣3),连接B'C,B'A,∵点B(0,3),B'(0,﹣3),点A(4,0),∴OB=OB'=3,OA=4,∴,∵点P是BC的中点,∴BP=PC,∵OB=OB',BP=PC,∴B'C=2OP,当点C在线段B'A上时,B'C的长度最小值=5﹣2=3,当点C在线段B'A的延长线上时,B'C的长度最大值=5+2=7,∴,故选:A.【点睛】本题考查了三角形中位线定理,勾股定理,平面直角坐标系,解决本题的关键是正确理解题意,熟练掌握三角形中位线定理的相关内容,能够得到线段之间的数量关系.10、C【分析】根据△的符号,可判断图像与x轴的交点情况,根据二次项系数可判断开口方向,令函数式中x=0,可求图像与y轴的交点坐标,利用配方法可求图像的顶点坐标.【详解】解:A、抛物线y=x2+6x﹣8中a=1>0,则抛物线开口方向向上,故本选项不符合题意.B、x=0时,y=﹣8,抛物线与y轴交点坐标为(0,﹣8),故本选项不符合题意.C、△=62﹣4×1×(-8)>0,抛物线与x轴有两个交点,本选项符合题意.D、抛物线y=x2+6x﹣8=(x+3)2﹣17,则该抛物线的对称轴是直线x=﹣3,故本选项不符合题意.故选:C.【点睛】本题主要考查的是二次函数的开口,与y轴x轴的交点,对称轴等基本性质,掌握二次函数的基本性质是解题的关键.11、A【解析】首先求出一元二次方程根的判别式,然后结合选项进行判断即可.【详解】解:∵一元二次方程,∴△=,即△<0,∴一元二次方程无实数根,故选A.【点睛】本题主要考查了根的判别式的知识,解题关键是要掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12、D【分析】首先根据旋转角定义可以知道,而,然后根据图形即可求出.【详解】解:∵绕点逆时针旋转70°到的位置,∴,而,∴故选D.【点睛】此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识.二、填空题(每题4分,共24分)13、【解析】由切线长定理得CD=AD,CE=BE,PA=PB,表示出△PED的周长即可解题.【详解】解:由切线长定理得CD=AD,CE=BE,PA=PB;
所以△PED的周长=PD+DC+CE+PE=PD+AD+BE+PE=PA+PB=2PA=16cm.【点睛】本题考查了圆的切线,属于简单题,熟悉圆的切线长定理是解题关键.14、,【分析】根据对称轴方程求得b,再代入解一元二次方程即可.【详解】解:∵二次函数y=x2+bx-5的对称轴为直线x=1,∴=1,即b=-2∴解得:,故答案为,.【点睛】本题主要考查的是抛物线与x轴的交点、一元二次方程等知识,根据抛物线的对称轴确定b的值是解答本题的关键.15、.【解析】如图,连接OA,过点O作OD⊥AB于点D,∵OD⊥AB,∴AD=AB=(9﹣1)=1.设OA=r,则OD=r﹣3,在Rt△OAD中,OA2﹣OD2=AD2,即r2﹣(r﹣3)2=12,解得r=(cm).16、30°【分析】根据坡度与坡比之间的关系即可得出答案.【详解】∵∴坡面的坡角为故答案为:【点睛】本题主要考查坡度与坡角,掌握坡度与坡角之间的关系是解题的关键.17、①④【分析】①按照圆的内接三角形的定义判断即可,三顶点都在一个圆周上的三角形,叫做这个圆周的内接三角形;②利用垂径定理得到弧长之间的关系即可;③设OP与DE交于点M,利用垂径定理可得DE⊥OP,DE=2ME,再利用直角三角形中斜边长大于直角边,找到PE与与ME的关系,进一步可以得到DE与PE的关系;④根据,即可得到∠DAP=∠PAE,则AP平分∠BAC.【详解】解:①点A、D、E三点均在⊙O上,所以△ADE是⊙O的内接三角形,此项正确;②∵DE⊥DE交⊙O于点P∴并不能证明与、关系,∴不正确;③设OP与DE交于点M∵DE⊥DE交⊙O于点P∴DE⊥OP,ME=DE(垂径定理)∴△PME是直角三角形∴ME<PE∴<PE∴DE<2PE故此项错误.④∵(已证)∴∠DAP=∠PAE(同弧所对的圆周角相等)∴AP平分∠BAC.故此项正确.故正确的序号为:①④【点睛】本题考查了圆中内接三角形定义、垂径定理与圆周角定理的应用,熟练掌握定理是解决此题的关键.18、1【分析】把原点坐标代入中得到关于m的一次方程,然后解一次方程即可.【详解】∵抛物线经过点(0,0),∴−1+m=0,∴m=1.故答案为1.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.三、解答题(共78分)19、(1)6;(2)【分析】(1)根据点A坐标及三角形面积公式求得的值,从而求得的值;(2)延长交轴于点,根据旋转的性质可得,,然后判定四边形为矩形,用含m,n的式子表示出点C的坐标,将点A,C代入反比例解析式中,得到关于m的方程,解方程,从而求解.【详解】解:(1)∵,轴于点,∴,.又,∴.∵点在双曲线上,∴.(2)延长交轴于点.∵绕点逆时针旋转得到,∴,,∴,,.∵轴于点,∴,∴四边形为矩形,∴,∴轴,∴,∴,,∴.∵点都在双曲线上,∴,化简得.解法一:解关于的方程,得.∵,∴,∴.解法二:方程两边同时除以,得,解得.∵,∴.【点睛】本题考查反比例函数的应用,比例系数k的几何意义,旋转的性质,及一元二次方程的解法,综合性较强,利用数形结合思想解题是本题的解题关键.20、(1)55m;(2)54.5m【分析】(1)直接利用相似三角形的判定与性质得出,进而得出答案;(2)根据锐角三角函数的定义列出,然后代入求值即可.【详解】解:则即解得:答:该塔的高度为55m.在中答:该塔的高度为【点睛】本题考查相似三角形的判定和性质及解直角三角形的应用,熟练掌握相似三角形对应边的比相等和角的正切值的求法是本题的解题关键.21、(1)如图,△AB′C′即为所求;见解析;(1)45°;(3)S△APC=.【解析】(1)如图所示,△AB′C′即为所求;(1)利用等腰三角形的性质即可解决问题;【问题解决】结论:PA1+PB1=PC1.证法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;证法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.【详解】(1)如图,△AB′C′即为所求;(1)∵△ABB′是等腰直角三角形,
∴∠AB′B=45°.
故答案为45°;(3)如图②,∵将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,∴△APP′是等边三角形,∠AP′C=∠APB=360°﹣90°﹣110°=150°,∴PP′=AP,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°,∴PP′=PC,即AP=PC∵∠APC=90°,∴AP1+PC1=AC1,即(PC)1+PC1=71,∴PC=,∴AP=,∴S△APC=AP•PC=【点睛】本题考查旋转的性质、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是熟练掌握旋转的性质,属于中考常考题型.22、(1);(2)8m3【分析】(1)根据函数图象为双曲线的一支,可设,又知(12,4)在此函数图象上,利用待定系数法求出函数的解析式;(2)把t=6代入函数的解析式即可求出每小时的排水量.【详解】(1)根据函数图象为双曲线的一支,可设,又知(12,4)在此函数图象上,则把(12,4)代入解析式得:,解得k=48,则函数关系式为:;(2)把t=6代入得:,则每小时的排水量应该是8m3.【点睛】主要考查了反比例函数的应用,解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式.23、(1)y=;(2)2.【分析】(1)先求出点A的坐标,然后利用待定系数法即可求出结论;(2)先求出点C的坐标,然后求出点E的坐标,最后利用四边形OCEA的面积=+即可得出结论.【详解】解:(1)当x=1时,y=x﹣2=1﹣2=2,则A(1,2),把A(1,2)代入y=得k=1×2=2,∴反比例函数解析式为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度智能房产抵押租赁协议
- 二零二五年度口腔诊所医疗器械及耗材供应链管理合同
- 2025版亮化工程劳务服务合同范本版
- 2025版租赁型养老设施承租居间服务协议
- 二零二五版房屋租赁抵押与资产重组合同
- 2025版住宅室内木工装修设计与施工承包合同范本
- 2025版数据科学家岗位劳动合同书
- 2025瑞典语等级考试A2试题:2025年春季学期文化背景解析
- 二零二五版叉车装卸搬运现场管理咨询服务合同
- 2025年注会计师会计新准则模拟试题
- 《问题解决策略:直观分析》教学设计
- 驿站快递合同协议书
- 华润守正评标专家考试试题及答案
- 食品公司销售管理制度
- 牙周炎培训课件
- DB51-T 3171-2024 四川省体育服务综合体等级划分
- 大学生职业发展与就业指导-09成功转换角色与适应职场环境
- 活检钳取病理应用
- 丝绸之路的开拓者张骞人物介绍
- 餐饮店铺装修拆除方案
- 夜市街规划设计方案
评论
0/150
提交评论