版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.点到轴的距离是()A. B. C. D.2.如图,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED//BC的是()A. B.C. D.3.用配方法解方程x2+2x﹣1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=34.等腰三角形的一边长等于4,一边长等于9,则它的周长是()A.17 B.22 C.17或22 D.135.主视图、左视图、俯视图分别为下列三个图形的物体是()A. B. C. D.6.如图,点A、B、C是⊙O上的三点,∠BAC=40°,则∠OBC的度数是()A.80° B.40° C.50° D.20°7.二次函数y=x2﹣2x+1与x轴的交点个数是()A.0 B.1 C.2 D.38.对于二次函数y=-(x+1)2+3,下列结论:①其图象开口向下;②其图象的对称轴为直线x=1;③其图象的顶点坐标为(-1,3);④当x>1时,y随x的增大而减小.其中正确结论的个数为()A.1 B.2 C.3 D.49.二次函数y=x2+2的对称轴为()A. B. C. D.10.如果x=4是一元二次方程x²-3x=a²的一个根,则常数a的值是()A.2 B.﹣2 C.±2 D.±4二、填空题(每小题3分,共24分)11.若双曲线的图象在第二、四象限内,则的取值范围是________.12.如图,在正方形ABCD的外侧,作等边△ABE,则∠BFC=_________°13.如图,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为,则()的值为_____.14.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点,点在上,,与交于点,连接,若,,则_____.15.如果关于x的方程x2﹣5x+k=0没有实数根,那么k的值为________16.如图,为的直径,弦于点,已知,,则的半径为______.17.如图,OA⊥OB,等腰直角△CDE的腰CD在OB上,∠ECD=45°,将△CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为__________18.抛物线y=(x﹣1)2+3的对称轴是直线_____.三、解答题(共66分)19.(10分)已知是的反比例函数,下表给出了与的一些值:141(1)写出这个反比例函数表达式;(2)将表中空缺的值补全.20.(6分)如图,已知直线与轴交于点,与轴交于点,抛物线经过、两点并与轴的另一个交点为,且.(1)求抛物线的解析式;(2)点为直线上方对称轴右侧抛物线上一点,当的面积为时,求点的坐标;(3)在(2)的条件下,连接,作轴于,连接、,点为线段上一点,点为线段上一点,满足,过点作交轴于点,连接,当时,求的长.21.(6分)图中是抛物线拱桥,点P处有一照明灯,水面OA宽4m,以O为原点,OA所在直线为x轴建立平面直角坐标系,已知点P的坐标为(3,).(1)求这条抛物线的解析式;(2)水面上升1m,水面宽是多少?22.(8分)定义:已知点是三角形边上的一点(顶点除外),若它到三角形一条边的距离等于它到三角形的一个顶点的距离,则我们把点叫做该三角形的等距点.(1)如图1:中,,,,在斜边上,且点是的等距点,试求的长;(2)如图2,中,,点在边上,,为中点,且.①求证:的外接圆圆心是的等距点;②求的值.23.(8分)阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2),分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为,求k的值.(3)点B在x轴上,以B为圆心,为半径画⊙B,若直线y=x+3与⊙B的“最美三角形”的面积小于,请直接写出圆心B的横坐标的取值范围.24.(8分)如图,已知是一次函数的图象与反比例函数的图象的两个交点(1)求此反比例函数和一次函数的解析式.(2)根据图象写出使反比例函数的值大于一次函数的值的x取值范围.25.(10分)如图,已知点A,B的坐标分别为(4,0),(3,2).(1)画出△AOB关于原点O对称的图形△COD;(2)将△AOB绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D的坐标是,点F的坐标是,此图中线段BF和DF的关系是.26.(10分)如图,已知圆锥的底面半径是2,母线长是6.(1)求这个圆锥的高和其侧面展开图中∠ABC的度数;(2)如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,求这根绳子的最短长度.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据点的坐标的性质即可得.【详解】由点的坐标的性质得,点P到x轴的距离为点P的纵坐标的绝对值则点到轴的距离是故选:C.【点睛】本题考查了点的坐标的性质,掌握理解点的坐标的性质是解题关键.2、C【分析】根据平行线分线段成比例定理推理的逆定理,对各选项进行逐一判断即可.【详解】A.当时,能判断;B.
当时,能判断;C.
当时,不能判断;D.
当时,,能判断.故选:C.【点睛】本题考查平行线分线段成比例定理推理的逆定理,根据定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.能根据定理判断线段是否为对应线段是解决此题的关键.3、B【分析】把常数项移到方程右边,再把方程两边加上1,然后把方程作边写成完全平方形式即可.【详解】解:∵x1+1x﹣1=0,∴x1+1x+1=1,∴(x+1)1=1.故选B.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)1=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.4、B【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为4时,4+4<9,不能构成三角形;当腰为9时,4+9>9,所以能构成三角形,周长是:9+9+4=1.故选B.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.5、A【解析】分析:本题时给出三视图,利用空间想象力得出立体图形,可以先从主视图进行排除.解析:通过给出的主视图,只有A选项符合条件.故选A.6、C【解析】∵∠BOC=2∠BAC,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C.7、B【解析】由△=b2-4ac=(-2)2-4×1×1=0,可得二次函数y=x2-2x+1的图象与x轴有一个交点.故选B.8、C【解析】由抛物线解析式可确定其开口方向、对称轴、顶点坐标,可判断①②③,再利用增减性可判断④,可求得答案.【详解】∵∴抛物线开口向上,对称轴为直线x=−1,顶点坐标为(−1,3),故②不正确,①③正确,∵抛物线开口向上,且对称轴为x=−1,∴当x>−1时,y随x的增大而增大,∴当x>1时,y随x的增大而增大,故④正确,∴正确的结论有3个,故选:C.【点睛】考查二次函数的图象与性质,掌握二次函数的开口方向、对称轴、顶点坐标的求解方法是解题的关键.9、B【分析】根据二次函数的性质解答即可.【详解】二次函数y=x2+2的对称轴为直线.故选B.【点睛】本题考查了二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质,熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键.y=a(x-h)2+k是抛物线的顶点式,a决定抛物线的形状和开口方向,其顶点是(h,k),对称轴是x=h.10、C【分析】把x=4代入原方程得关于a的一元一次方程,从而得解.【详解】把x=4代入方程可得16-12=,解得a=±2,故选C.考点:一元二次方程的根.二、填空题(每小题3分,共24分)11、m<8【分析】对于反比例函数:当k>0时,图象在第一、三象限;当k<0时,图象在第二、四象限.【详解】由题意得,解得故答案为:【点睛】本题考查的是反比例函数的性质,本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.12、1【解析】根据正方形的性质及等边三角形的性质求出∠ADE=15°,∠DAC=45°,再求∠DFC,证△DCF≅△BCF,可得∠BFC=∠DFC.【详解】∵四边形ABCD是正方形,
∴AB=AD=CD=BC,∠DCF=∠BCF=45°
又∵△ABE是等边三角形,
∴AE=AB=BE,∠BAE=1°
∴AD=AE
∴∠ADE=∠AED,∠DAE=90°+1°=150°
∴∠ADE=(180°-150°)÷2=15°
又∵∠DAC=45°
∴∠DFC=45°+15°=1°在△DCF和△BCF中CD=BC∠DCF=∠BCF∴△DCF≅△BCF∴∠BFC=∠DFC=1°
故答案为:1.【点睛】本题主要是考查了正方形的性质和等边三角形的性质,本题的关键是求出∠ADE=15°.13、【分析】根据题意,由AAS证明△AEH≌△BFE,则BE=AH,根据相似比为,令EH=,AB=,设AE=,AH=,在直角三角形AEH中,利用勾股定理,即可求出的值,即可得到答案.【详解】解:在正方形EFGH与正方形ABCD中,∠A=∠B=90°,EF=EH,∠FEH=90°,∴∠AEH+∠AHE=90°,∠BEF+∠AEH=90°,∴∠AHE=∠BEF,∴△AEH≌△BFE(AAS),∴BE=AH,∵,令EH=,AB=,在直角三角形AEH中,设AE=,AH=AB-AE=,由勾股定理,得,即,解得:或,∵,∴,∴,∴;故答案为:.【点睛】本题考查了相似四边形的性质,正方形的性质,全等三角形的判定和性质,勾股定理,解题的关键是利用勾股定理求出AE和BE的长度.14、.【解析】过点C作CM⊥DE于点M,过点E作EN⊥AC于点N,先证△BCD∽△ACE,求出AE的长及∠CAE=60°,推出∠DAE=90°,在Rt△DAE中利用勾股定理求出DE的长,进一步求出CD的长,分别在Rt△DCM和Rt△AEN中,求出MC和NE的长,再证△MFC∽△NFE,利用相似三角形对应边的比相等即可求出CF与EF的比值.【详解】解:如图,过点作于点,过点作于点,∵,,∴,∵在中,,∴,在与中,∵,∴,∴,∵,∵,∴,∴∽,∴,∴,∴,,∴,在中,,在中,,∴,,在中,,在中,,∵,∴∽,∴,故答案为:.【点睛】本题考查了相似三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够通过作适当的辅助线构造相似三角形,求出对应线段的比.15、k>【解析】据题意可知方程没有实数根,则有△=b2-4ac<0,然后解得这个不等式求得k的取值范围即可.【详解】∵关于x的方程x2-5x+k=0没有实数根,∴△<0,即△=25-4k<0,∴k>,故答案为:k>.【点睛】本题主要考查了一元二次方程根的判别式(△=b2-4ac)判断方程的根的情况:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有:当△<0时,方程无实数根.基础题型比较简单.16、1【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.【详解】解:连接OD,
∵CD⊥AB于点E,∴DE=CE=CD=×8=4,∠OED=90°,
由勾股定理得:OD=,即⊙O的半径为1.
故答案为:1.【点睛】本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE的长是解此题的关键.17、【分析】由旋转角的定义可得∠DCM=75°,进一步可得∠NCO=60°,△NOC是30°直角三角形,设DE=a,将OC,CD用a表示,最后代入即可解答.【详解】解:由题意得∠DCM=75°,∠NCM=∠ECD=45°∴∠NCO=180°-75°-45°=60°∴∠ONC=90°-60°=30°设CD=a,CN=CE=a∴OC=CN=∴故答案为.【点睛】本题主要考查了旋转的性质、等腰直角三角形的性质,抓住旋转的旋转方向、旋转角,找到旋转前后的不变量是解答本题的关键.18、x=1【解析】解:∵y=(x﹣1)2+3,∴其对称轴为x=1.故答案为x=1.三、解答题(共66分)19、(1);(2),-4,,-1,3,2,3,【分析】(1)设出反比例函数解析式,把代入解析式即可得出答案;(2)让的乘积等于3计算可得表格中未知字母的值.【详解】解:(1)设,,∴(2)=,=-4,=,=-1,=3,=2,=3,=.故答案为:,-4,,-1,3,2,3,.【点睛】本题考查了反比例函数的解析式,熟练掌握解析式的求法是解题的关键.20、(3);(3)R(3,3);(3)3或.【分析】(3)求出A、B、C的坐标,把A、B的坐标代入抛物线解析式,解方程组即可得出结论;(3)设R(t,).作RK⊥y轴于K,RW⊥x轴于W,连接OR.根据计算即可;(3)在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB于H.分两种情况讨论:①点E在F的左边;②点E在F的右边.【详解】(3)当x=0时y=3,∴C(0,3),∴OC=3.∵OC=3OA,∴OA=3,∴A(-3,0).当y=0时x=4,∴B(4,0).把A、B坐标代入得解得:,∴抛物线的解析式为.(3)设R(t,).作RK⊥y轴于K,RW⊥x轴于W,连接OR.∵∵,∴,(舍去),,∴R(3,3).(3)在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB于H.分两种情况讨论:①当点E在F的左边时,如图3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ,∴AM∥EQ,∴∠MAH=∠QEF.∵∠QFE=∠MHA=90°,∴△QEF∽△MAH,∴.∵OA=3,OH=3,MH=RH-RM=3-3=3,∴AH=AO+OH=4,∴EF=3QF.设CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=3m,∴EH=3m.∵ACPE为平行四边形,∴AE=CP=m.∵EH=AH-AE=4-m,∴3m=4-m,∴m=3,∴CP=3.②当点E在F的右边时,设AM交QE于N.如图3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ=45°,∴∠ENG=∠ENA=90°.∵∠EQF+∠QEF=90°,∠EAN+∠QEF=90°,∴∠EQF=∠MAB.∵∠QFE=∠AHM=90°,∴△QEF∽△AMH,∴,∴QF=3EF.设CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=m,∴EH=m.∵ACPE为平行四边形,∴AE=CP=m.∵EH=AH-AE=4-m,∴4-m=m,∴m=,∴CP=.综上所述:CP的值为3或.【点睛】本题是二次函数的综合题目,涉及了相似三角形的判定与性质、平行四边形的性质,解答本题需要我们熟练各个知识点的内容,注意要分类讨论.21、(1)y=﹣x2+2x;(2)2m【分析】(1)利用待定系数法求解可得;
(3)在所求函数解析式中求出y=1时x的值即可得.【详解】解:(1)设抛物线的解析式为y=ax2+bx+c,将点O(0,0)、A(4,0)、P(3,)代入,得:解得:,所以抛物线的解析式为y=﹣x2+2x;(2)当y=1时,﹣x2+2x=1,即x2﹣4x+2=0,解得:x=2,则水面的宽为2+﹣(2﹣)=2(m).答:水面宽是:2m.【点睛】考查二次函数的应用,掌握待定系数法求二次函数解析式是解题的关键.22、(1)或;(2)①证明见解析,②.【分析】(1)根据三角形的等距点的定义得出OB=OE或OA=OF,利用相似三角形,表达出对应边,列出方程求解即可;(2)①由△CPD为直角三角形,作出外接圆,通过平行线分线段成比例得出DP∥OB,进而证明△CBO≌△PBO,最后推出OP为点O到AB的距离,从而证明点O是△ABC的等距点;(2)求相当于求,由①可得△APO为直角三角,通过勾股定理计算出BC的长度,从而求出.【详解】解:(1)如图所示,作OF⊥BC于点F,作OE⊥AC于点E,则△OBF∽△ABC,∴∵,,由勾股定理可得AB=5,设OB=x,则∴,∵点是的等距点,若OB=OE,∴解得:若OA=OF,OA=5-x∴,解得故OB的值为或(2)①证明:∵△CDP是直角三角形,所以取CD中点O,作出△CDP的外接圆,连接OP,OB设圆O的半径为r,则DC=2r,∵D是AC中点,∴OA=3r∴,又∵PA=2PB,∴AB=3PB∴∴∴∠ODP=∠COB,∠OPD=∠POB又∵∠ODP=∠OPD,∴∠COB=∠POB,在△CBO与△PBO中,,∴△CBO≌△PBO(SAS)∴∠OCB=∠OPB=90°,∴OP⊥AB,即OP为点O到AB的距离,又∵OP=OC,∴△CPD的外接圆圆心O是△ABC的等距点②由①可知,△OPA为直角三角形,且∠PDC=∠BOC,OC=OP=r∵在Rt△OPA中,OA=3r,∴,∴∴在Rt△ABC中,AC=4r,,∴,∴【点睛】本题考查了几何中的新定义问题,涉及了相似三角形的判定和性质,直角三角形的性质,圆的性质及三角函数的内容,范围较大,综合性较强,解题的关键是明确题中的新定义,并灵活根据几何知识作出解答.23、(1)②;(2)±1;(3)<<或<<【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k的正负分类讨论,作图后根据最美三角形的定义求解EF,利用勾股定理求解AF,进一步确定∠AOF度数,最后利用勾股定理确定点F的坐标,利用待定系数法求k.(3)本题根据⊙B在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB的度数,继而按照最美三角形的定义,分别以△BND,△BMN为媒介计算BD长度,最后与OD相减求解点B的横坐标范围.【详解】(1)如下图所示:∵PM是⊙O的切线,∴∠PMO=90°,当⊙O的半径OM是定值时,,∵,∴要使面积最小,则PM最小,即OP最小即可,当OP⊥时,OP最小,符合最美三角形定义.故在图1三个三角形中,因为AO⊥x轴,故△AOP为⊙A与x轴的最美三角形.故选:②.(2)①当k<0时,按题意要求作图并在此基础作FM⊥x轴,如下所示:按题意可得:△AEF是直线y=kx与⊙A的最美三角形,故△AEF为直角三角形且AF⊥OF.则由已知可得:,故EF=1.在△AEF中,根据勾股定理得:.∵A(0,2),即OA=2,∴在直角△AFO中,,∴∠AOF=45°,即∠FOM=45°,故根据勾股定理可得:MF=MO=1,故F(-1,1),将F点代入y=kx可得:.②当k>0时,同理可得k=1.故综上:.(3)记直线与x、y轴的交点为点D、C,则,,①当⊙B在直线CD右侧时,如下图所示:在直角△COD中,有,,故,即∠ODC=60°.∵△BMN是直线与⊙B的最美三角形,∴MN⊥BM,BN⊥CD,即∠BND=90°,在直角△BDN中,,故.∵⊙B的半径为,∴.当直线CD与⊙B相切时,,因为直线CD与⊙B相离,故BN>,此时BD>2,所以OB=BD-OD>.由已知得:<,故MN<1.在直角△BMN中,<,此时可利用勾股定理算得BD<,<=,则<<.②当⊙B在直线CD左侧时,同理可得:<<.故综上:<<或<<.【点睛】本题考查圆与直线的综合问题,属于创新题目,此类型题目解题关键在于了解题干所给示例,涉及动点问题时必须分类讨论,保证不重不漏,题目若出现最值问题,需要利用转化思想将面积或周长最值转化为线段最值以降低解题难度,求解几何线段时勾股定理极为常见.24、(1),y=-x-1;(1)x>1或-4<x<0【分析】(1)先把A(-4,1)代入求出m=-8,从而确定反比例函数的解析式为;再把B(n,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《材料成形设计综合实验》实验教学大纲
- 经济贸易毕业论文:中国OFDI发展史
- 玉溪师范学院《女性社会工作》2023-2024学年第一学期期末试卷
- 2024年磷铁项目评估分析报告
- 《机械零件的三坐标检测》课程框架
- 《开发和利用资源促进园本课程建设》课题方案
- 采购合同诉讼费收费标准
- 爆破监理延期合同
- 糖尿病新生儿护理课件
- 07 C简谐运动的描述 中档版2025新课改-高中物理-选修第1册(21讲)
- 2024年中级电工考前必刷必练题库500题(含真题、必会题)
- 《第二单元测试卷》(单元练习)-2024-2025学年六年级上册数学北师大版
- 2024年度陕西省安全员之A证(企业负责人)能力提升试卷A卷附答案
- 2024年员工向公司借款合同标准版本(六篇)
- 《PLC应用技术(西门子S7-1200)第二版》全套教学课件
- 泰康保险在线测评真题
- 小学语文阅读校本课程设计方案
- 初中道法教学经验交流会发言稿范文
- DB3301-T 1139-2024 地理标志产品 千岛湖鲢鳙
- 2024-2030年中国陶瓷珠市场发展趋势及投资可行性价值评估报告
- 高中生物-第1节 种群的特征教学设计学情分析教材分析课后反思
评论
0/150
提交评论