2023届荆门市重点中学数学九年级第一学期期末经典试题含解析_第1页
2023届荆门市重点中学数学九年级第一学期期末经典试题含解析_第2页
2023届荆门市重点中学数学九年级第一学期期末经典试题含解析_第3页
2023届荆门市重点中学数学九年级第一学期期末经典试题含解析_第4页
2023届荆门市重点中学数学九年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若关于的方程的一个根是,则的值是()A. B. C. D.2.将抛物线先向上平移3个单位长度,再向右平移1个单位长度可得抛物线()A. B.C. D.3.为了美化校园环境,加大校园绿化投资.某区前年用于绿化的投资为18万元,今年用于绿化的投资为33万元,设这两年用于绿化投资的年平均增长率为x,则()A.18(1+2x)=33 B.18(1+x2)=33C.18(1+x)2=33 D.18(1+x)+18(1+x)2=334.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2cm B.5.4cm C.3.6cm D.0.6cm5.用一圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是()A.1cm B.2cm C.3cm D.4cm6.如图,在△ABC中,AB=2.2,BC=3.6,∠B=60°,将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上时,则CD的长为()A.1.5 B.1.4 C.1.3 D.1.27.由的图像经过平移得到函数的图像说法正确的是()A.先向左平移6个单位长度,然后向上平移7个单位长度B.先向左平移6个单位长度,然后向下平移7个单位长度C.先向右平移6个单位长度,然后向上平移7个单位长度D.先向右平移6个单位长度,然后向下平移7个单位长度8.一元二次方程x2+4x=5配方后可变形为()A.(x+2)2=5 B.(x+2)2=9 C.(x﹣2)2=9 D.(x﹣2)2=219.某学校要种植一块面积为200m2的长方形草坪,要求两边长均不小于10m,则草坪的一边长y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B. C. D.10.下列说法正确的是()A.对角线相等的平行四边形是菱形B.方程x2+4x+9=0有两个不相等的实数根C.等边三角形都是相似三角形D.函数y=,当x>0时,y随x的增大而增大11.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A.2B.4C.2D.412.某企业五月份的利润是25万元,预计七月份的利润将达到49万元.设平均月增长率为x,根据题意可列方程是()A.25(1+x%)2=49 B.25(1+x)2=49C.25(1+x2)=49 D.25(1-x)2=49二、填空题(每题4分,共24分)13.如图,P是等边△ABC内的一点,若将△PAC绕点A按逆时针方向旋转到△P'AB,则∠PAP'=_____.14.定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.若抛物线y=ax2﹣2ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,则a的取值范围是_____.15.已知一个几何体的主视图与俯视图如图所示,则该几何体可能是__________.16.若顺次连接四边形ABCD各边中点所得四边形为矩形,则四边形ABCD的对角线AC、BD之间的关系为_____.17.如图,是的内接三角形,,的长是,则的半径是__________.18.如图,扇形OAB,∠AOB=90,⊙P与OA、OB分别相切于点F、E,并且与弧AB切于点C,则扇形OAB的面积与⊙P的面积比是.三、解答题(共78分)19.(8分)某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.20.(8分)已知在矩形中,,.是对角线上的一个动点(点不与点,重合),过点作,交射线于点.联结,画,交于点.设,.(1)当点,,在一条直线上时,求的面积;(2)如图1所示,当点在边上时,求关于的函数解析式,并写出函数定义域;(3)联结,若,请直接写出的长.21.(8分)如图,四边形ABCD的三个顶点A、B、D在⊙O上,BC经过圆心O,且交⊙O于点E,∠A=120°,∠C=30°.(1)求证:CD是⊙O的切线.(2)若CD=6,求BC的长.(3)若⊙O的半径为4,则四边形ABCD的最大面积为.22.(10分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,求抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC为直角三角形的点P的坐标.(提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=).23.(10分)已知抛物线C1:y1=a(x﹣h)2+2,直线1:y2=kx﹣kh+2(k≠0).(1)求证:直线l恒过抛物线C的顶点;(2)若a>0,h=1,当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,求t的取值范围.(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1≤k≤3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围.24.(10分)小明手中有一根长为5cm的细木棒,桌上有四个完全一样的密封的信封.里面各装有一根细木棒,长度分别为:2、3、4、5(单位:cm).小明从中任意抽取两个信封,然后把这3根细木棒首尾顺次相接,求它们能搭成三角形的概率.(请用“画树状图”或“列表”等方法写出分析过程)25.(12分)如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)∠C=45°,⊙O的半径为2,求阴影部分面积.26.我们可以把一个假分数写成一个整数加上一个真分数的形式,如=3+.同样的,我们也可以把某些分式写成类似的形式,如=3+.这种方法我们称为“分离常数法”.(1)如果=1+,求常数a的值;(2)利用分离常数法,解决下面的问题:当m取哪些整数时,分式的值是整数?(3)我们知道一次函数y=x-1的图象可以看成是由正比例函数y=x的图象向下平移1个单位长度得到,函数y=的图象可以看成是由反比例函数y=的图象向左平移1个单位长度得到.那么请你分析说明函数y=的图象是由哪个反比例函数的图象经过怎样的变换得到?

参考答案一、选择题(每题4分,共48分)1、A【分析】把代入方程,即可求出的值.【详解】解:∵方程的一个根是,∴,∴,故选:A.【点睛】本题考查了一元二次方程的解,以及解一元一次方程,解题的关键是熟练掌握解方程的步骤.2、A【分析】根据抛物线平移的规律:上加下减,左加右减,即可得解.【详解】平移后的抛物线为故答案为A.【点睛】此题主要考查抛物线平移的性质,熟练掌握,即可解题.3、C【解析】根据题意可以列出相应的一元二次方程,本题得以解决.【详解】由题意可得,18(1+x)2=33,故选:C.【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的一元二次方程,这是一道典型的增长率问题.4、B【解析】由已知可证△ABO∽CDO,故,即.【详解】由已知可得,△ABO∽CDO,所以,,所以,,所以,AB=5.4故选B【点睛】本题考核知识点:相似三角形.解题关键点:熟记相似三角形的判定和性质.5、B【解析】∵扇形的圆心角为120°,半径为6cm,∴根据扇形的弧长公式,侧面展开后所得扇形的弧长为∵圆锥的底面周长等于它的侧面展开图的弧长,∴根据圆的周长公式,得,解得r=2cm.故选B.考点:圆锥和扇形的计算.6、B【分析】运用旋转变换的性质得到AD=AB,进而得到△ABD为等边三角形,求出BD即可解决问题.【详解】解:如图,由题意得:AD=AB,且∠B=60°,∴△ABD为等边三角形,∴BD=AB=2,∴CD=3.6﹣2.2=1.1.故选:B.【点睛】该题主要考查了旋转变换的性质、等边三角形的判定等几何知识点及其应用问题;牢固掌握旋转变换的性质是解题的关键.7、C【分析】分别确定出两个抛物线的顶点坐标,再根据左减右加,上加下减确定平移方向即可得解.【详解】解:抛物线y=2x2的顶点坐标为(0,0),

抛物线y=2(x-6)2+1的顶点坐标为(6,1),所以,先向右平移6个单位,再向上平移1个单位可以由抛物线y=2x2平移得到抛物线y=2(x-6)2+1.

故选:C.【点睛】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.8、B【分析】两边配上一次项系数一半的平方可得.【详解】∵x2+4x=5,∴x2+4x+4=5+4,即(x+2)2=9,故选B.【点睛】本题主要考查解一元二次方程的基本技能,熟练掌握解一元二次方程的常用方法和根据不同方程灵活选择方法是解题的关键.9、C【解析】易知y是x的反比例函数,再根据边长的取值范围即可解题.【详解】∵草坪面积为200m2,∴x、y存在关系y=200x∵两边长均不小于10m,∴x≥10、y≥10,则x≤20,故选:C.【点睛】本题考查反比例函数的应用,根据反比例函数解析式确定y的取值范围,即可求得x的取值范围,熟练掌握实际问题的反比例函数图象是解题的关键.10、C【分析】根据相似三角形的判定,菱形的判定方法,一元二次方程根的判别式反比例函数的性质可得出答案.【详解】解:A.对角线相等的平行四边形是矩形,故本选项错误;B.方程x2+4x+9=0中,△=16﹣36=﹣20<0,所以方程没有实数根,故本选项错误;C.等边三角形对应角相等,对应边成比例,所以是相似三角形,故本选项正确;D.函数y=,当x>0时,y随x的增大而减小,故本选项错误.故选:C.【点睛】本题考查了相似三角形的判定,菱形的判定方法,一元二次方程根的判别式反比例函数的性质,熟记定理是解题的关键.11、C【分析】过D作AE的垂线交AE于F,交AC于D′,再过D′作AP′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.【详解】作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D’,2P′D′2=AD′2,即2P′D′2=16,∴P′D′=22,即DQ+PQ的最小值为22,故答案为C.【点睛】本题考查了正方形的性质以及角平分线的性质和全等三角形的判定和性质和轴对称-最短路线问题,根据题意作出辅助线是解答此题的12、B【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设利润的年平均增长率为x,然后根据已知条件可得出方程.【详解】解:依题意得七月份的利润为25(1+x)2,

∴25(1+x)2=1.

故选:B.【点睛】本题考查了一元二次方程的应用,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.二、填空题(每题4分,共24分)13、60°【解析】试题分析:根据旋转图形的性质可得:∠PAP′=∠BAC=60°.考点:旋转图形的性质14、【分析】如图所示,,图象实心点为8个“整点”,则符合条件的抛物线过点A、B之间不含点,即可求解.【详解】解:,故抛物线的顶点为:;抛物线y=ax2﹣2ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,∴,如图所示,图象实心点为8个“整点”,则符合条件的抛物线过点和点上方,并经过点和点下方,当抛物线过点上方时,,解得:;当抛物线过点上方时,,解得:;当抛物线过点下方时,,解得:;当抛物线过点下方时,,解得:;∵四个条件同时成立,∴故答案为:.【点睛】本题考查根据二次函数的图象确定二次函数的字母系数的取值范围.找出包含“整点”的位置,利用数形结合的数学思想是解题的关键,难度较大.15、三棱柱【分析】根据主视图和俯视图的特征判断即可.【详解】解:根据主视图可知:此几何体前表面应为长方形根据俯视图可知,此几何体的上表面为三角形∴该几何体可能是三棱柱.故答案为:三棱柱.【点睛】此题考查的是根据主视图和俯视图判断几何体的形状,掌握常见几何体的三视图是解决此题的关键.16、AC⊥BD.【分析】根据矩形的性质、三角形的中位线定理和平行线的性质即可得出结论.【详解】解:如图,设四边形EFGH是符合题意的中点四边形,则四边形EFGH是矩形,∴∠FEH=90°,∵点E、F分别是AD、AB的中点,∴EF是△ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD的中点,∴EH是△ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案为AC⊥BD.【点睛】本题考查了矩形的性质、三角形的中位线定理和平行线的性质,熟练掌握三角形中位线定理是解此题的关键.17、【分析】连接OB、OC,如图,由圆周角定理可得∠BOC的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB、OC,如图,∵,∴∠BOC=90°,∵的长是,∴,解得:.故答案为:.【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键.18、【详解】依题意连接OC则P在OC上,连接PF,PE则PF⊥OA,PE⊥OB,由切线长定理可知四边形OEPF为正方形,且其边长即⊙P的半径(设⊙P的半径为r)∴OP=又OC=OP+PC=+r=(1+)r即扇形OAB的(1+)r,∴三、解答题(共78分)19、(1)w=﹣x2+90x﹣1800;(2)当x=45时,w有最大值,最大值是1;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【分析】(1)每天的销售利润=每天的销售量×每件产品的利润;

(2)根据配方法,可得答案;

(3)根据自变量与函数值的对应关系,可得答案.【详解】(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+1,∵﹣1<0,当x=45时,w有最大值,最大值是1.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>42,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【点睛】本题考查的知识点是二次函数的应用,解题的关键是熟练的掌握二次函数的应用.20、(1);(2);(3)或.【分析】(1)首先证明,由推出,求出,再利用即可求解;(2)首先证明,可得,再由,推出,即,可得,代入比例式即可解决问题;(3)若,分两种情况:当点P在线段BC上时和当点F在线段BC的延长线上时,分情况运用相似三角形的性质进行讨论即可.【详解】(1)四边形是矩形,,,,,在一条直线上,且,,,,,,,.(2),,,,,,又,,.,,,即,,,,.(3)①当点P在线段BC上时,如图设整理得解得②当点F在线段BC的延长线上时,作PH⊥AD于点H,连接DF由,可得解得或(舍去)综上所述,PD的长为或.【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及性质和分情况讨论是解题的关键.21、(1)证明见解析;(2);(3).【分析】(1)连接、,根据圆内接四边形的性质得到,求得,又点在上,于是得到结论;(2)由(1)知:又,设为,则为,根据勾股定理即可得到结论;(3)连接BD,OA,根据已知条件推出当四边形ABOD的面积最大时,四边形ABCD的面积最大,当OA⊥BD时,四边形ABOD的面积最大,根据三角形和菱形的面积公式即可得到结论.【详解】解:(1)证明:连接、,四边形为圆内接四边形,,,,又点在上,是的切线;(2)由(1)知:又,,设为,则为,在中,,即,,又,,;(3)连接,,,,,,,,,,,当四边形的面积最大时,四边形的面积最大,当时,四边形的面积最大,四边形的最大面积,故答案为:.【点睛】本题考查了圆的综合题,切线的判定,勾股定理,三角形的面积的计算,正确的作出辅助线是解题的关键.22、(1)y=x+3;y=﹣x2﹣2x+3;(2)M的坐标是(﹣1,2);(3)P的坐标是(﹣1,)或(﹣1,)或(﹣1,4)或(﹣1,﹣2).【分析】(1)用待定系数法即可求出直线BC和抛物线的解析式;(2)设直线BC与对称轴x=−1的交点为M,则此时MA+MC的值最小.把x=−1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(−1,t),又因为B(−3,0),C(0,3),所以可得BC2=18,PB2=(−1+3)2+t2=4+t2,PC2=(−1)2+(t−3)2=t2−6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.【详解】(1)A(1,0)关于x=﹣1的对称点是(﹣3,0),则B的坐标是(﹣3,0)根据题意得:解得则直线的解析式是y=x+3;根据题意得:解得:则抛物线的解析式是y=﹣x2﹣2x+3(2)设直线BC与对称轴x=−1的交点为M,则此时MA+MC的值最小.把x=−1代入直线y=x+3得,y=−1+3=2,∴M(−1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(−1,2);(3)如图,设P(−1,t),又∵B(−3,0),C(0,3),∴BC2=18,PB2=(−1+3)2+t2=4+t2,PC2=(−1)2+(t−3)2=t2−6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2−6t+10解之得:t=−2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2−6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2−6t+10=18解之得:t1=,t2=;∴P的坐标是(﹣1,)或(﹣1,)或(﹣1,4)或(﹣1,﹣2).【点睛】本题是二次函数的综合题,考查了二次函数的图象与性质,待定系数法求函数的解析式,利用轴对称性质确定线段的最小长度,两点间的距离公式的运用,直角三角形的性质等知识点,熟练掌握二次函数的性质是解题的关键.23、(1)证明见解析;(2)﹣2≤t≤1;(3)﹣1<a<0或0<a<1.【解析】(1)利用二次函数的性质找出抛物线的顶点坐标,将x=h代入一次函数解析式中可得出点(h,2)在直线1上,进而可证出直线l恒过抛物线C1的顶点;(2)由a>0可得出当x=h=1时y1=a(x﹣h)2+2取得最小值2,结合当t≤x≤t+3时二次函数y1=a(x﹣h)2+2的最小值为2,可得出关于t的一元一次不等式组,解之即可得出结论;(3)令y1=y2可得出关于x的一元二次方程,解之可求出点P,Q的横坐标,由线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,可得出>1或<﹣1,再结合1≤k≤3,即可求出a的取值范围.【详解】(1)∵抛物线C1的解析式为y1=a(x﹣h)2+2,∴抛物线的顶点为(h,2),当x=h时,y2=kx﹣kh+2=2,∴直线l恒过抛物线C1的顶点;(2)∵a>0,h=1,∴当x=1时,y1=a(x﹣h)2+2取得最小值2,又∵当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,∴,∴﹣2≤t≤1;(3)令y1=y2,则a(x﹣h)2+2=k(x﹣h)+2,解得:x1=h,x2=h+,∵线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,∴>1或<﹣1,∵k>0,∴0<a<k或﹣k<a<0,又∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论