版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图图形中,是轴对称图形又是中心对称图形的是()A. B.C. D.2.已知正比例函数的函数值随自变量的增大而增大,则二次函数的图象与轴的交点个数为()A.2 B.1 C.0 D.无法确定3.“割圆术”是我国古代的一位伟大的数学家刘徽首创的,该割圆术,就是通过不断倍增圆内接正多边形的边数来求出圆周率的一种方法,某同学在学习“割圆术”的过程中,画了一个如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为().A.1 B.3 C.3.1 D.3.144.如图,已知点是反比例函数的图象上一点,轴于,且的面积为3,则的值为()A.4 B.5 C.6 D.75.随着国民经济快速发展,我国涌现出一批规模大、效益高的企业,如大疆、国家核电、华为、凤凰光学等,以上四个企业的标志是中心对称图形的是()A. B. C. D.6.已知下列命题:①等弧所对的圆心角相等;②90°的圆周角所对的弦是直径;③关于x的一元二次方程有两个不相等的实数根,则ac<0;④若二次函数y=的图象上有两点(-1,y1)、(2,y2),则>;其中真命题的个数是()A.1个 B.2个 C.3个 D.4个7.抛物线y=﹣2(x+1)2﹣3的对称轴是()A.直线x=1 B.直线x=﹣1 C.直线x=3 D.直线x=﹣38.将抛物线y=x2﹣2向上平移1个单位后所得新抛物线的表达式为()A.y=﹣1 B.y=﹣3 C.y=﹣2 D.y=﹣29.已知M(a,b)是平面直角坐标系xOy中的点,其中a是从l,2,3,4三个数中任取的一个数,b是从l,2,3,4,5五个数中任取的一个数.定义“点M(a,b)在直线x+y=n上”为事件Qn(2≤n≤9,n为整数),则当Qn的概率最大时,n的所有可能的值为()A.5 B.4或5 C.5或6 D.6或710.2018年是江华县脱贫攻坚摘帽决胜年,11月25号市检查组来我县随机抽查了50户贫困户,其中还有1户还没有达到脱贫的标准,请聪明的你估计我县3000户贫困户能达到脱贫标准的大约有()户A.60 B.600 C.2940 D.240011.如图,在菱形中,,是线段上一动点(点不与点重合),当是等腰三角形时,()A.30° B.70° C.30°或60° D.40°或70°12.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>1;②b2﹣4ac>1;③9a﹣3b+c=1;④若点(﹣1.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<1.其中正确的个数有()A.2 B.3 C.4 D.5二、填空题(每题4分,共24分)13.分解因式:__________.14.如图,在中,,,,点是上的任意一点,作于点,于点,连结,则的最小值为________.15.在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是_____.16.某10人数学小组的一次测试中,有4人的成绩都是80分,其他6人的成绩都是90分,则这个小组成绩的平均数等于_____分.17.如图,在中,,,,点D、E分别是AB、AC的中点,CF是的平分线,交ED的延长线于点F,则DF的长是______.18.将二次函数化成的形式,则__________.三、解答题(共78分)19.(8分)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,则抽到数字“2”的概率是___________;(2)从四张卡片中随机抽取2张卡片,请用列表或画树状图的方法求抽到“数字和为5”的概率.20.(8分)如图,在菱形ABCD中,对角线AC与BD相交于点M,已知BC=5,点E在射线BC上,tan∠DCE=,点P从点B出发,以每秒2个单位沿BD方向向终点D匀速运动,过点P作PQ⊥BD交射线BC于点O,以BP、BQ为邻边构造▱PBQF,设点P的运动时间为t(t>0).(1)tan∠DBE=;(2)求点F落在CD上时t的值;(3)求▱PBQF与△BCD重叠部分面积S与t之间的函数关系式;(4)连接▱PBQF的对角线BF,设BF与PQ交于点N,连接MN,当MN与△ABC的边平行(不重合)或垂直时,直接写出t的值.21.(8分)某校九年级学生参加了中考体育考试.为了了解该校九年级(1)班同学的中考体育成绩情况,对全班学生的中考体育成绩进行了统计,并绘制出以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:分组分数段(分)频数A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)m的值为;(2)该班学生中考体育成绩的中位数落在组;(在A、B、C、D、E中选出正确答案填在横线上)(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.22.(10分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为______;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.23.(10分)如图,点是正方形边.上一点,连接,作于点,于点,连接.(1)求证:;(2)己知,四边形的面积为,求的值.24.(10分)专卖店销售一种陈醋礼盒,成本价为每盒40元.如果按每盒50元销售,每月可售出500盒;若销售单价每上涨1元,每月的销售量就减少10盒.设此种礼盒每盒的售价为x元(50<x<75),专卖店每月销售此种礼盒获得的利润为y元.(1)写出y与x之间的函数关系式;(2)专卖店计划下月销售此种礼盒获得8000元的利润,每盒的售价应为多少元?(3)专卖店每月销售此种礼盒的利润能达到10000元吗?说明理由.25.(12分)某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元.(1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款;(2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.26.计算:2cos30°+(π﹣3.14)0﹣
参考答案一、选择题(每题4分,共48分)1、D【解析】试题解析:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转后它的两部分能够重合;即不满足中心对称图形的定义,故此选项不合题意;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转后它的两部分能够重合;即不满足中心对称图形的定义,故此选项不合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形,故此选项不合题意;D、是轴对称图形,又是中心对称图形,故此选项符合题意;故选D.2、A【分析】根据正比例函数的性质可以判断k的正负情况,然后根据△的正负,即可判断二次函数的图象与轴的交点个数,本题得以解决.【详解】∵正比例函数的函数值随自变量的增大而增大,∴k>0,∵二次函数为∴△=[−2(k+1)]2−4×1×(k2−1)=8k+8>0,∴二次函数为与轴的交点个数为2,故选:A.【点睛】本题考查二次函数与x轴的交点个数和正比例函数的性质,解答本题的关键是明确题意,利用根的判别式来解答.3、B【分析】先求出,进而得出,根据这个圆的内接正十二边形的面积为进行求解.【详解】∵是圆的内接正十二边形,∴,∵,∴,∴这个圆的内接正十二边形的面积为,故选B.【点睛】本题考查正十二边形的面积计算,先求出是解题的关键.4、C【分析】根据反比例函数的几何意义解答即可【详解】解:设A点坐标为(a,b),由题意可知:AB=a,OB=b因为∴ab=6将(a,b)带入反比例函数得:解得:故本题答案为:C【点睛】本题考查了反比例函数的图像与性质和三角形的基本概念5、B【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此依次判断即可.【详解】∵在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,∴A、C、D不符合,不是中心对称图形,B选项为中心对称图形.故选:B.【点睛】本题主要考查了中心对称图形的定义,熟练掌握相关概念是解题关键.6、B【分析】利用圆周角定理、一元二次方程根的判别式及二次函数的增减性分别判断正误后即可得到正确的选项.【详解】解:①等弧所对的圆心角也相等,正确,是真命题;②90°的圆周角所对的弦是直径,正确,是真命题;③关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2-ac>0,但不能够说明ac<0,所以原命题错误,是假命题;④若二次函数的图象上有两点(-1,y1)(2,y2),则y1>y2,不确定,因为a的正负性不确定,所以原命题错误,是假命题;其中真命题的个数是2,故选:B.【点睛】考查了命题与定理的知识,解题的关键是了解圆周角定理、一元二次方程根的判别式及二次函数的增减性,难度不大.7、B【分析】根据题目中抛物线的解析式,可以写出该抛物线的对称轴.【详解】解:∵抛物线y=﹣2(x+1)2﹣3,∴该抛物线的对称轴为直线x=﹣1,故选:B.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).8、A【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:将抛物线y=x2﹣2向上平移1个单位后所得新抛物线的表达式为y=x2﹣2+1,即y=x2﹣1.故选:A.【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.9、C【解析】试题分析:列树状图为:∵a是从l,2,3,4四个数中任取的一个数,b是从l,2,3,4,5五个数中任取的一个数.又∵点M(a,b)在直线x+y=n上,2≤n≤9,n为整数,∴n=5或6的概率是,n=4的概率是,∴当Qn的概率最大时是n=5或6的概率是最大.故选C.考点:1、列表法与树状图法;2、一次函数图象上点的坐标特征10、C【分析】由题意根据用总户数乘以能达到脱贫标准所占的百分比即可得出答案.【详解】解:根据题意得:(户),答:估计我县3000户贫困户能达到脱贫标准的大约有2940户.故选:C.【点睛】本题考查的是通过样本去估计总体,注意掌握总体平均数约等于样本平均数是解题的关键.11、C【分析】根据是等腰三角形,进行分类讨论【详解】是菱形,,不符合题意所以选C12、B【分析】分析:根据二次函数的性质一一判断即可.【详解】详解:∵抛物线对称轴x=-1,经过(1,1),∴-=-1,a+b+c=1,∴b=2a,c=-3a,∵a>1,∴b>1,c<1,∴abc<1,故①错误,∵抛物线对称轴x=-1,经过(1,1),可知抛物线与x轴还有另外一个交点(-3,1)∴抛物线与x轴有两个交点,∴b2-4ac>1,故②正确,∵抛物线与x轴交于(-3,1),∴9a-3b+c=1,故③正确,∵点(-1.5,y1),(-2,y2)均在抛物线上,(-1.5,y1)关于对称轴的对称点为(-1.5,y1)(-1.5,y1),(-2,y2)均在抛物线上,且在对称轴左侧,-1.5>-2,则y1<y2;故④错误,∵5a-2b+c=5a-4a-3a=-2a<1,故⑤正确,故选B.【点睛】本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每题4分,共24分)13、【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点,再利用平方差公式分解因式.a2-9=a2-32=(a+3)(a-3).故答案为(a+3)(a-3).考点:因式分解-运用公式法.14、【分析】连接,根据矩形的性质可知:,当最小时,则最小,根据垂线段最短可知当时,则最小,再根据三角形的面积为定值即可求出的长.【详解】中,,,,,连接,于点,于点,四边形是矩形,,当最小时,则最小,根据垂线段最短可知当时,则最小,.故答案为:.【点睛】本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求的最小值转化为其相等线段的最小值.15、(﹣2,3).【解析】根据坐标轴的对称性即可写出.【详解】解:根据中心对称的性质,得点P(2,﹣3)关于原点的对称点P′的坐标是(﹣2,3).故答案为:(﹣2,3).【点睛】此题主要考查直角坐标系内的坐标变换,解题的关键是熟知直角坐标系的特点.16、1.【分析】根据平均数的定义解决问题即可.【详解】平均成绩=(4×80+6×90)=1(分),故答案为1.【点睛】本题考查平均数的定义,解题的关键是掌握平均数的定义.17、4【分析】勾股定理求AC的长,中位线证明EF=EC,DE=2.5即可解题.【详解】解:在中,,,∴AC=13(勾股定理),∵点、分别是、的中点,∴DE=2.5(中位线),DE∥BC,∵是的平分线,∴∠ECF=∠BCF=∠EFC,∴EF=EC=6.5,∴DF=6.5-2.5=4.【点睛】本题考查了三角形的中位线,等角对等边,勾股定理,中等难度,证明EF=EC是解题关键.18、【分析】利用配方法,加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.【详解】解:,,.故答案为:.【点睛】本题考查了二次函数的三种形式:一般式:,顶点式:;两根式:.正确利用配方法把一般式化为顶点式是解题的关键.三、解答题(共78分)19、(1);(2)P=
.【解析】(1)根据概率公式直接解答;(2)画出树状图,找到所有可能的结果,再找到抽到“数字和为5”的情况,即可求出其概率.【详解】解:(1)∵四张正面分别标有数字1,2,3,4的不透明卡片,∴随机抽取一张卡片,抽到数字“2”的概率=;(2)随机抽取第一张卡片有4种等可能结果,抽取第二张卡片有3种等可能结果,列树状图为:所有可能结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1)(4,2),(4,3),总的结果共12种,数字和为“5”的结果有4种:(1,4),(2,3),(3,2),(4,1)抽到数字和为“5”的概率P=.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20、(1);(1)t=;(3)见解析;(4)t的值为或或或1.【分析】(1)如图1中,作DH⊥BE于H.解直角三角形求出BH,DH即可解决问题.(1)如图1中,由PF∥CB,可得,由此构建方程即可解决问题.(3)分三种情形:如图3-1中,当时,重叠部分是平行四边形PBQF.如图3-1中,当时,重叠部分是五边形PBQRT.如图3-3中,当1<t≤1时,重叠部分是四边形PBCT,分别求解即可解决问题.
(4)分四种情形:如图4-1中,当MN∥AB时,设CM交BF于T.如图4-1中,当MN⊥BC时.如图4-3中,当MN⊥AB时.当点P与点D重合时,MN∥BC,分别求解即可.【详解】解:(1)如图1中,作DH⊥BE于H.在Rt△BCD中,∵∠DHC=90°,CD=5,tan∠DCH=,∴DH=4,CH=3,∴BH=BC+CH=5+3=8,∴tan∠DBE===.故答案为.(1)如图1中,∵四边形ABCD是菱形,∴AC⊥BD,∵BC=5,tan∠CBM==,∴CM=,BM=DM=1,∵PF∥CB,∴=,∴=,解得t=.(3)如图3﹣1中,当0<t≤时,重叠部分是平行四边形PBQF,S=PB•PQ=1t•t=10t1.如图3﹣1中,当<t≤1时,重叠部分是五边形PBQRT,S=S平行四边形PBQF﹣S△TRF=10t1﹣•[1t﹣(5﹣5t)]•[1t﹣(5﹣5t)]=﹣55t1+(10+50)t﹣15.如图3﹣3中,当1<t≤1时,重叠部分是四边形PBCT,S=S△BCD﹣S△PDT=×5×4﹣•(5﹣t)•(4﹣1t)=﹣t1+10t.(4)如图4﹣1中,当MN∥AB时,设CM交BF于T.∵PN∥MT,∴=,∴=,∴MT=,∵MN∥AB,∴===1,∴PB=BM,∴1t=×1,∴t=.如图4﹣1中,当MN⊥BC时,易知点F落在DH时,∵PF∥BH,∴=,∴=,解得t=.如图4﹣3中,当MN⊥AB时,易知∠PNM=∠ABD,可得tan∠PNM==,∴=,解得t=,当点P与点D重合时,MN∥BC,此时t=1,综上所述,满足条件的t的值为或或或1.【点睛】本题属于四边形综合题,考查了菱形的性质,平行四边形的性质,平行线分线段成比例定理,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.21、(1)18;(2)D组;(3)图表见解析,【分析】(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;(2)利用中位数的定义得出中位数的位置;(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.【详解】解:(1)由题意可得:全班学生人数:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);故答案为:18;(2)∵全班学生人数有50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段,∴落在D段故答案为:D;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1,A1A2B1A1(A1,A2)(A1,B1)A2(A2,A1)(A2,B1)B1(B1,A1)(B1,A2)∵共有6种等情况数,∴恰好选到一男一女的概率是==.【点睛】此题主要考查了列表法求概率以及扇形统计图的应用,根据题意利用列表法得出所有情况是解题关键.22、(1)画图见解析;(2);(3).【解析】试题分析:(1)根据网格结构找出点A、B绕点O逆时针旋转90°后的对应点A1、B1的位置,然后顺次连接即可;(2)利用勾股定理列式求OB,再利用弧长公式计算即可得解;(3)利用勾股定理列式求出OA,再根据AB所扫过的面积=S扇形A1OA+S△A1B1O-S扇形B1OB-S△AOB=S扇形A1OA-S扇形B1OB求解,再求出BO扫过的面积=S扇形B1OB,然后计算即可得解.试题解析:(1)△A1OB1如图所示;(2)由勾股定理得,BO=,所以,点B所经过的路径长=(3)由勾股定理得,OA=,∵AB所扫过的面积=S扇形A1OA+S△A1B1O-S扇形B1OB-S△AOB=S扇形A1OA-S扇形B1OBBO扫过的面积=S扇形B1OB,∴线段AB、BO扫过的图形的面积之和=S扇形A1OA-S扇形B1OB+S扇形B1OB,=S扇形A1OA,=考点:1.作图-旋转变换;2.勾股定理;3.弧长的计算;4.扇形面积的计算.23、(1)见解析;(2)【分析】(1)首先由正方形的性质得出BA=AD,∠BAD=90°,又由DE⊥AM于点E,BF⊥AM得出∠AFB=90°,∠DEA=90°,∠ABF=∠EAD,然后即可判定△ABF≌△DAE,即可得出BF=AE;(2)首先设AE=x,则BF=x,DE=AF=2,然后将四边形的面积转化为两个三角形的面积之和,列出方程,得出BF,然后利用勾股定理得出BE,即可得解.【详解】(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DAE(AAS),∴BF=AE;(2)设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴=.【点睛】此题主要考查正方形的性质以及三角形全等的判定与性质、勾股定理的运用,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西省吕梁市离石区光明小学校2023-2024学年五年级上学期期中英语试卷
- 塑料制品的抗紫外线和抗老化处理考核试卷
- 电气机械的电磁场与电波传播考核试卷
- 劳务协作就业帮扶项目实施方案
- 台球游戏课件教学课件
- 篮球的课件教学课件
- 医院新员工培训总结报告
- 食品安全教育培训
- 针叶樱桃课件教学课件
- 册草原课件教学课件
- 年产2000吨塑料制品项目环评报告书
- 2023届高考数学复习微难点7 三角函数中ω的范围问题(共11张PPT)
- A4作文格纸可直接打印使用
- 通风管道的设计计算和构造
- MSA EXCEL计算表全套模板
- 数学-九宫数独100题(附答案)
- 高中区域地理俄罗斯(课堂PPT)
- 人教版七年级上册第六单元作文发挥联想和想象
- 化工设备安装监理实施细则1
- 慢性病管理PPT课件
- 矿泉水项目融资方案分析
评论
0/150
提交评论