2025届浙江省杭州市景成实验学校九上数学期末学业水平测试试题含解析_第1页
2025届浙江省杭州市景成实验学校九上数学期末学业水平测试试题含解析_第2页
2025届浙江省杭州市景成实验学校九上数学期末学业水平测试试题含解析_第3页
2025届浙江省杭州市景成实验学校九上数学期末学业水平测试试题含解析_第4页
2025届浙江省杭州市景成实验学校九上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省杭州市景成实验学校九上数学期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A.4 B.6 C.9 D.122.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A.1个 B.2个 C.3个 D.4个3.如图,在Rt△ABC中,CE是斜边AB上的中线,CD⊥AB,若CD=5,CE=6,则△ABC的面积是()A.24 B.25 C.30 D.364.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于()A.34° B.46° C.56° D.66°5.抛物线的顶点坐标是()A. B. C. D.6.下列说法正确的是()A.等弧所对的圆心角相等B.三角形的外心到这个三角形的三边距离相等C.经过三点可以作一个圆D.相等的圆心角所对的弧相等7.下列图形中,既是轴对称图形又是中心对称图形的共有()A.1个 B.2个 C.3个 D.4个8.如图,一边靠墙(墙有足够长),其它三边用12m长的篱笆围成一个矩形(ABCD)花园,这个花园的最大面积是()A.16m2 B.12m2 C.18m2 D.以上都不对9.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:910.如图,河堤横断面迎水坡的坡比是,堤高,则坡面的长度是()A. B. C. D.11.点A(﹣3,y1),B(0,y2),C(3,y3)是二次函数y=﹣(x+2)2+m图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y1=y3<y2 C.y3<y2<y1 D.y1<y3<y212.如图是一根空心方管,则它的主视图是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,点,分别在线段,上,若,,,,则的长为________.14.当________时,的值最小.15.如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,如果AB=8cm,小圆直径径为6cm,那么大圆半径为_____cm.16.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.17.如图,点在反比例函数的图象上,过点作AB⊥轴,AC⊥轴,垂足分别为点,若,,则的值为____.18.已知a、b是一元二次方程x2+x﹣1=0的两根,则a+b=_____.三、解答题(共78分)19.(8分)如图,在中,,点是中点.连接.作,垂足为,的外接圆交于点,连接.(1)求证:;(2)过点作圆的切线,交于点.若,求的值;(3)在(2)的条件下,当时,求的长.20.(8分)甲乙两人参加一个幸运挑战活动,活动规则是:一个布袋里装有3个只有颜色不同的球,其中2个红球,1个白球.甲从布袋中摸出一个球,记下颜色后放回,搅匀,乙再摸出一个球,若颜色相同,则挑战成功.(1)用列表法或树状图法,表示所有可能出现的结果.(2)求两人挑战成功的概率.21.(8分)先化简,再求值:÷(1﹣),其中a是方程x2+x﹣2=0的解.22.(10分)如图:在平面直角坐标系中,直线:与轴交于点,经过点的抛物线的对称轴是.(1)求抛物线的解析式.(2)平移直线经过原点,得到直线,点是直线上任意一点,轴于点,轴于点,若点在线段上,点在线段的延长线上,连接,,且.求证:.(3)若(2)中的点坐标为,点是轴上的点,点是轴上的点,当时,抛物线上是否存在点,使四边形是矩形?若存在,请求出点的坐标,如果不存在,请说明理由.23.(10分)计算:(1)tan60°-+(3.14-π)0;(2)解方程:.24.(10分)“道路千万条,安全第一条”,《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过”,一辆小汽车在一条城市街道上由西向东行驶,在据路边处有“车速检测仪”,测得该车从北偏西的点行驶到北偏西的点,所用时间为.(1)试求该车从点到点的平均速度(结果保留根号);(2)试说明该车是否超速.25.(12分)小红想利用阳光下的影长测量学校旗杆AB的高度.如图,他在某一时刻在地面上竖直立一个2米长的标杆CD,测得其影长DE=0.4米.(1)请在图中画出此时旗杆AB在阳光下的投影BF.(2)如果BF=1.6,求旗杆AB的高.26.如图,在矩形ABCD中,AB=2,E为BC上一点,且BE=1,∠AED=90°,将AED绕点E顺时针旋转得到,A′E交AD于P,D′E交CD于Q,连接PQ,当点Q与点C重合时,AED停止转动.(1)求线段AD的长;(2)当点P与点A不重合时,试判断PQ与的位置关系,并说明理由;(3)求出从开始到停止,线段PQ的中点M所经过的路径长.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据三视图,得出立体图形,从而得出小正方形的个数.【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析.2、C【解析】∵△BMN是由△BMC翻折得到的,∴BN=BC,又点F为BC的中点,在Rt△BNF中,sin∠BNF=,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°-∠FBN=30°,故②正确;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°=,∴BC=CM,AB2=3CM2故③正确;∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,∴△PMN是等边三角形,故④正确;由题给条件,证不出CM=DM,故①错误.故正确的有②③④,共3个.故选C.3、C【分析】根据题意及直角三角形斜边上的中线等于斜边的一半可得:AB=2CE=12再根据三角形面积公式,即△ABC面积=AB×CD=30.故选C.【详解】解:∵CE是斜边AB上的中线,∴AB=2CE=2×6=12,∴S△ABC=×CD×AB=×5×12=30,故选:C.【点睛】本题的考点是直角三角形斜边上的中线性质及三角形面积公式.方法是根据题意求出三角形面积公式中的底,再根据面积公式即可得出答案.4、C【解析】由AB是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ADB=90°,又由∠ACD=34°,可求得∠ABD的度数,再根据直角三角形的性质求出答案.【详解】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ACD=34°,∴∠ABD=34°∴∠BAD=90°﹣∠ABD=56°,故选:C.【点睛】此题考查了圆周角定理以及直角三角形的性质.此题比较简单,注意掌握数形结合思想的应用.5、D【分析】当时,是抛物线的顶点,代入求出顶点坐标即可.【详解】由题意得,当时,是抛物线的顶点代入到抛物线方程中∴顶点的坐标为故答案为:D.【点睛】本题考查了抛物线的顶点坐标问题,掌握求二次函数顶点的方法是解题的关键.6、A【解析】试题分析:A.等弧所对的圆心角相等,所以A选项正确;B.三角形的外心到这个三角形的三个顶点的距离相等,所以B选项错误;C.经过不共线的三点可以作一个圆,所以C选项错误;D.在同圆或等圆中,相等的圆心角所对的弧相等,所以D选项错误.故选C.考点:1.确定圆的条件;2.圆心角、弧、弦的关系;3.三角形的外接圆与外心.7、B【分析】根据中心对称图形和轴对称图形的概念即可得出答案.【详解】根据中心对称图形和轴对称图形的概念,可以判定既是中心对称图形又是轴对称图形的有第3第4个共2个.故选B.考点:1.中心对称图形;2.轴对称图形.8、C【分析】设AB边为x,则BC边为(12-2x),根据矩形的面积可列二次函数,再求出最大值即可.【详解】设AB边为x,则BC边为(12-2x),则矩形ABCD的面积y=x(12-2x)=-2(x-3)2+18,∴当x=3时,面积最大为18,选C.【点睛】此题主要考察二次函数的应用,正确列出函数是解题的关键.9、A【分析】根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴,故选A.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.10、D【分析】直接利用坡比的定义得出AC的长,进而利用勾股定理得出答案.【详解】∵河堤横断面迎水坡AB的坡比是,∴,∴,解得:AC=,故AB===8(m),故选:D.【点睛】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键.11、C【解析】先确定抛物线的对称轴,然后比较三个点到对称轴的距离,再利用二次函数的性质判断对应的函数值的大小.【详解】二次函数y=﹣(x+2)2+m图象的对称轴为直线x=﹣2,又a=-1,二次函数开口向下,∴x<-2时,y随x增大而增大,x>-2时,y随x增大而减小,而点A(﹣3,y1)到直线x=﹣2的距离最小,点C(3,y3)到直线x=﹣2的距离最大,所以y3<y2<y1.故选:C.【点睛】此题主要考查二次函数的图像,解题的关键是熟知二次函数的图像与性质.12、B【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看是:大正方形里有一个小正方形,∴主视图为:

故选:B.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的线画虚线.二、填空题(每题4分,共24分)13、7.1【分析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】解:,,即,解得,,,故答案为:7.1.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.14、【分析】根据二次根式的意义和性质可得答案.【详解】解:由二次根式的性质可知,当时,取得最小值0故答案为2【点睛】本题考查二次根式的“双重非负性”即“根式内的数或式大于等于零”和“根式的计算结果大于等于零”15、1【分析】连接OA,由切线的性质可知OP⊥AB,由垂径定理可知AP=PB,在Rt△OAP中,利用勾股定理可求得OA的长.【详解】如图,连接OP,AO,∵AB是小圆的切线,∴OP⊥AB,∵OP过圆心,∴AP=BP=AB=4cm,∵小圆直径为6cm,∴OP=3cm,在Rt△AOP中,由勾股定理可得OA==1(cm),即大圆的半径为1cm,故答案为:1.【点睛】此题考查垂径定理,勾股定理,在圆中垂径定理通常与勾股定理一起运用求半径、弦、弦心距中的一个量的值.16、1.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+1+3+4+5)÷5=3,∴方差=[(1﹣3)1+(1﹣3)1+(3﹣3)1+(4﹣3)1+(5﹣3)1]÷5=1.考点:方差.17、【分析】求出点A坐标,即可求出k的值.【详解】解:根据题意,设点A的坐标为(x,y),∵,,AB⊥轴,AC⊥轴,∴点A的横坐标为:;点A的纵坐标为:;∵点A在反比例函数的图象上,∴;故答案为:.【点睛】本题考查了待定系数法求反比例函数解析式,解题的关键是熟练掌握反比例函数图象上点的坐标特征.18、-1【分析】直接根据两根之和的公式可得答案.【详解】∵a、b是一元二次方程x2+x﹣1=0的两根,∴a+b=﹣1,故答案为:﹣1.【点睛】此题考查一元二次方程根与系数的公式,熟记公式并熟练解题是关键.三、解答题(共78分)19、(1)详见解析;(2)2;(3)5.【分析】(1)根据等腰三角形的判定即可求解;(2)根据切线的性质证明,根据得到,再得到,故,表示出,再根据中,利用的定义即可求解;(3)根据,利用三角函数的定义即可求解.【详解】(1)证明:∵,为中点,∴,∴.又∵,∴,∴.∵,∴,∴,∴.(2)解:∵是的外接圆,且,∴是直径.∵是切线,∴,∵,∴,∴,∵,∴,∴设,,∴.∵,,∴,∴,∴,∴,∴在中,.(3)∵,∴,∴,.∴,.∴,由(1)得∴,∴AG=BG故G为BC中点,∴.【点睛】.此题主要考查圆的综合问题,解题的关键是熟知圆切线的判定、三角函数的定义、相似三角形的判定与性质.20、(1)见解析;(2).【分析】用列表法列举出所有等可能出现的结果,从中找出颜色相同的结果数,进而求出概率.【详解】解:(1)用列表法表示所有可能出现的结果如下:(2)共有9种等可能出现的结果,其中颜色相同的有5种,∴P(颜色相同)=,答:获胜的概率为.【点睛】考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.21、,-.【分析】先求出程x2+x﹣2=0的解,再将所给分式化简,然后把使分式有意义的解代入计算即可.【详解】解:∴x2+x﹣2=0,∴(x-1)(x+2)=0,∴x1=1,x2=-2,原式=•=,∵a是方程x2+x﹣2=0的解,∴a=1(没有意义舍去)或a=﹣2,则原式=﹣.【点睛】本题考查了分式的化简求值,一元二次方程的解法,熟练掌握分式的运算法则和一元二次方程的解法是解答本题的关键.22、(1);(2)证明见解析;(3)存在,点的坐标为或.【分析】(1)先求得点A的坐标,然后依据抛物线过点A,对称轴是,列出关于a、c的方程组求解即可;

(2)设P(3n,n),则PC=3n,PB=n,然后再证明∠FPC=∠EPB,最后通过等量代换进行证明即可;

(3)设,然后用含t的式子表示BE的长,从而可得到CF的长,于是可得到点F的坐标,然后依据中点坐标公式可得到,,从而可求得点Q的坐标(用含t的式子表示),最后,将点Q的坐标代入抛物线的解析式求得t的值即可.【详解】解:(1)当时,,解得,即,抛物线过点,对称轴是,得,解得,抛物线的解析式为;(2)∵平移直线经过原点,得到直线,∴直线的解析式为.∵点是直线上任意一点,∴,则,.又∵,∴.∵轴,轴∴∴∵,∴,∴.(3)设,点在点的左侧时,如图所示,则.∵,∴.∴.∵四边形为矩形,∴,,∴,,∴,.将点的坐标代入抛物线的解析式得:,解得:或(舍去).∴.当点在点的右侧时,如下图所示,则.∵,∴.∴.∵四边形为矩形,∴,,∴,,∴,.将点的坐标代入抛物线的解析式得:,解得:或(舍去).∴.综上所述,点的坐标为或.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含t的式子表示点Q的坐标是解题的关键.23、(1)2;(2)x1=2,x2=1.【分析】(1)根据特殊角的三角函数值,绝对值的意义和零指数幂的运算法则计算即可;(2)利用因式分解法解方程即可.【详解】(1)解:原式=-+1+1=2;(2),,或,∴x1=2,x2=1.【点睛】本题主要考查实数的混合运算及解一元二次方程,掌握特殊角的三角函数值,绝对值的意义,零指数幂的运算法则和因式分解法是解题的关键.24、(1);(2)没有超过限速.【分析】(1)分别在、中,利用正切求得、的长,从而求得的长,已知时间路程则可以根据公式求得其速度.(2)将限速与其速度进行比较,若大于限速则超速,否则没有超速.此时注意单位的换算.【详解】解:(1)在中,,在中,,.小汽车从到的速度为.(2),又,小汽车没有超过限速.【点睛】本题考查了解直角三角形的应用,掌握方向角的概念、锐角三角函数的定义是解题的关键..25、(1)见解析(2)8m【详解】试题分析:(1)利用太阳光线为平行光线作图:连结CE,过A点作AF∥CE交BD于F,则BF为所求;(2)证明△ABF∽△CDE,然后利用相似比计算AB的长.试题解析:(1)连结CE,过A点作AF∥CE交BD于F,则BF为所求,如图;(2)∵AF∥CE,∴∠AFB=∠CED,而∠ABF=∠CDE=90°,∴△ABF∽△CDE,∴,即,∴AB=8(m),答:旗杆AB的高为8m.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论