版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
备战2020年高考数学大题精做之解答题题型全覆盖高端精品第二篇数列与不等式专题05等差数列和等比数列的证明问题类型对应典例由递推式证明一个数列为等比数列典例1由数列内部构造新数列证明为等差数列典例2由两个数列结合构造数列证明等差、等比数列典例3由复杂递推式转化构造证明等差数列典例4由两个数列的相关性证明数列为等差等比数列典例5探究数列是否为等差等比数列,说明理由典例6与概率统计相结合的数列问题的证明典例7【典例1】【2020届广东省中山市高三上学期期末】设为数列的前项和,已知,.(1)证明为等比数列;(2)判断,,是否成等差数列?并说明理由.【思路引导】(1)由递推关系求得,通过计算,证得数列为等比数列.(2)由(1)求得数列的通项公式,由分组求和法求得,证得,所以,,成等差数列.【典例2】【江西省名校(临川一中、南昌二中)2019届高三5月联合】已知数列有,是它的前项和,且.(1)求证:数列为等差数列.(2)求的前项和.【思路引导】(1)先化简已知得,,再求出,再证明数列为等差数列;(2)对n分奇数和偶数两种情况讨论得解.【典例3】【2019年全国统一高考数学试卷(理科)(新课标Ⅱ)】已知数列{an}和{bn}满足a1=1,b1=0,,.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.【思路引导】(1)可通过题意中的以及对两式进行相加和相减即可推导出数列是等比数列以及数列是等差数列;(2)可通过(1)中的结果推导出数列以及数列的通项公式,然后利用数列以及数列的通项公式即可得出结果.【典例4】【安徽省阜阳市2019-2020学年高三教学质量统测】已知数列满足,且.(1)证明数列是等差数列,并求数列的通项公式;(2)若,求数列的前项和.【思路引导】(1)由,利用定义能证明是以为公差的等差数列,从而求出;(2)由,利用错位相减法即可求得数列的前项和.【典例5】【2020届福建省莆田市(第一联盟体)上学期高三联考】在正项数列中,已知且.(1)证明:数列是等差数列;(2)设的前项和为,证明:.【思路引导】(1)由题设条件证明数列是等差数列,并得出数列的通项公式,进而得出,再由等差数列的定义证明即可;(2)由等差数列的前项和公式得出,再由裂项求和法证明不等式.【典例6】【2018年全国普通高等学校招生统一考试文科数学(新课标I卷)】已知数列满足,,设.(1)求;(2)判断数列是否为等比数列,并说明理由;(3)求的通项公式.【思路引导】(1)根据题中条件所给的数列的递推公式,将其化为,分别令和,代入上式求得和,再利用,从而求得,,;(2)利用条件可以得到,从而可以得出,这样就可以得到数列是首项为,公比为的等比数列;(3)借助等比数列的通项公式求得,从而求得.【典例7】【河南省名校联盟2019-2020学年高三11月教学质量检测】一种掷骰子走跳棋的游戏:棋盘上标有第0站、第1站、第2站、…、第100站,共101站,设棋子跳到第n站的概率为,一枚棋子开始在第0站,棋手每掷一次骰子,棋子向前跳动一次.若掷出奇数点,棋子向前跳一站;若掷出偶数点,棋子向前跳两站,直到棋子跳到第99站(获胜)或第100站(失败)时,游戏结束(骰子是用一种均匀材料做成的立方体形状的游戏玩具,它的六个面分别标有点数1,2,3,4,5,6).(1)求,,,并根据棋子跳到第n站的情况,试用和表示;(2)求证:为等比数列;(3)求玩该游戏获胜的概率.【思路引导】(1)在第0站是必然事件,所以.棋子跳到第1站,只有一种情形,第一次掷骰子出现奇数点,可求出,棋子跳到第2站,包括两种情形,①第一次掷骰子岀现偶数点,②前两次掷骰子出现奇数点,可求出.棋子跳到第站,包括两种情形,①棋子先跳到第站,又掷骰子出现偶数点,②棋子先跳到第站,又掷骰子出现奇数点,进行求解.
(2)由(1)知,,所以可证.
(3)该游戏获胜的概率,即求,由(2)用累加法可求解.【针对训练】1.【2020届湖南省益阳市高三上学期期末】在数列中,有.(1)证明:数列为等差数列,并求其通项公式;(2)记,求数列的前n项和.2.【2020届广东省东莞市高三期末调研测试】已知数列中,且(1)求证:数列为等比数列;(2)求数列的前项和.3.【2020届安徽省皖东县中联盟上学期高三期末】已知数列的前项和,满足,.(1)求证:数列为等比数列;(2)若,求数列的前项和.4.【湖南省衡阳市2019届高三第二次联考(二模)】已知数列,满足,,,.(1)证明:数列,为等比数列;(2)记为数列的前项和,证明:.5.【2020届重庆市高三上学期期末测试卷】已知数列的前n项和为,且.(1)证明:数列是等比数列;(2)设,证明:.6.【湖南省衡阳市衡阳县、长宁、金山区2019-2020学年高三上学期12月联考】设,向量,,.(1)试问数列是否为等差数列?为什么?(2)求数列的前项和.7.【2020届福建省漳州市高三第一次教学质量检测卷】已知数列满足,.(1)证明:数列为等差数列;(2)设,求数列的前项和.8.【2020届黑龙江省第一高级中学高三上学期期末数学】已知数列的前项和为,,,.(1)证明:数列为等比数列;(2)已知曲线若为椭圆,求的值;(3)若,求数列的前项和.9.【江苏省泰州市2019届高三上学期期末考试数学试题】已知数列{}的前n项和为Sn,,且对任意的n∈N*,n≥2都有.(1)若0,,求r的值;(2)数列{}能否是等比数列?说明理由;(3)当r=1时,求证:数列{}是等差数列.10.【天津市新华中学2019届高三高考模拟】已知等比数列的前项和为,公比.数列满足.(1)求数列的通项公式;(2)证明数列为等差数列;(3)设数列的通项公式为:,其前项和为,求.11.【2019年全国统一高考数学试卷(理科)(新课标Ⅰ)】为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求的分布列;(2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则,,,其中,,.假设,.(i)证明:为等比数列;(ii)求,并根据的值解释这种试验方案的合理性.备战2020年高考数学大题精做之解答题题型全覆盖高端精品第二篇数列与不等式专题05等差数列和等比数列的证明问题类型对应典例由递推式证明一个数列为等比数列典例1由数列内部构造新数列证明为等差数列典例2由两个数列结合构造数列证明等差、等比数列典例3由复杂递推式转化构造证明等差数列典例4由两个数列的相关性证明数列为等差等比数列典例5探究数列是否为等差等比数列,说明理由典例6与概率统计相结合的数列问题的证明典例7【典例1】【2020届广东省中山市高三上学期期末】设为数列的前项和,已知,.(1)证明为等比数列;(2)判断,,是否成等差数列?并说明理由.【思路引导】(1)由递推关系求得,通过计算,证得数列为等比数列.(2)由(1)求得数列的通项公式,由分组求和法求得,证得,所以,,成等差数列.解:(1)证明:∵,,∴,由题意得,,∴是首项为2,公比为2的等比数列.(2)由(1),∴.∴,∴,∴,即,,成等差数列.【典例2】【江西省名校(临川一中、南昌二中)2019届高三5月联合】已知数列有,是它的前项和,且.(1)求证:数列为等差数列.(2)求的前项和.【思路引导】(1)先化简已知得,,再求出,再证明数列为等差数列;(2)对n分奇数和偶数两种情况讨论得解.解:(1)当时,所以,,两式对应相减得,所以又n=2时,所以,所以,所以数列为等差数列.(2)当为偶数时,当为奇数时,综上:【典例3】【2019年全国统一高考数学试卷(理科)(新课标Ⅱ)】已知数列{an}和{bn}满足a1=1,b1=0,,.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.【思路引导】(1)可通过题意中的以及对两式进行相加和相减即可推导出数列是等比数列以及数列是等差数列;(2)可通过(1)中的结果推导出数列以及数列的通项公式,然后利用数列以及数列的通项公式即可得出结果.解:(1)由题意可知,,,,所以,即,所以数列是首项为、公比为的等比数列,,因为,所以,数列是首项、公差为的等差数列,.(2)由(1)可知,,,所以,.【典例4】【安徽省阜阳市2019-2020学年高三教学质量统测】已知数列满足,且.(1)证明数列是等差数列,并求数列的通项公式;(2)若,求数列的前项和.【思路引导】(1)由,利用定义能证明是以为公差的等差数列,从而求出;(2)由,利用错位相减法即可求得数列的前项和.解:(1)因为,所以,两边都加上1,得,所以,即,所以数列是以为公差的等差数列,且首项是,所以,即.(2)因为,所以数列的前项和,①则,②由①-②,得,所以.【典例5】【2020届福建省莆田市(第一联盟体)上学期高三联考】在正项数列中,已知且.(1)证明:数列是等差数列;(2)设的前项和为,证明:.【思路引导】(1)由题设条件证明数列是等差数列,并得出数列的通项公式,进而得出,再由等差数列的定义证明即可;(2)由等差数列的前项和公式得出,再由裂项求和法证明不等式.解:(1)∵∴,∴数列是公差为2的等差数列.∵∴,∴,∴,∴,∴,∴,∴数列是等差数列.(2)由(1)可得∴,∴,∴,.【典例6】【2018年全国普通高等学校招生统一考试文科数学(新课标I卷)】已知数列满足,,设.(1)求;(2)判断数列是否为等比数列,并说明理由;(3)求的通项公式.【思路引导】(1)根据题中条件所给的数列的递推公式,将其化为,分别令和,代入上式求得和,再利用,从而求得,,;(2)利用条件可以得到,从而可以得出,这样就可以得到数列是首项为,公比为的等比数列;(3)借助等比数列的通项公式求得,从而求得.解:(1)由条件可得.将代入得,,而,所以,.将代入得,,所以,.从而,,;(2)是首项为,公比为的等比数列.由条件可得,即,又,所以是首项为,公比为的等比数列;由(2)可得,所以.【典例7】【河南省名校联盟2019-2020学年高三11月教学质量检测】一种掷骰子走跳棋的游戏:棋盘上标有第0站、第1站、第2站、…、第100站,共101站,设棋子跳到第n站的概率为,一枚棋子开始在第0站,棋手每掷一次骰子,棋子向前跳动一次.若掷出奇数点,棋子向前跳一站;若掷出偶数点,棋子向前跳两站,直到棋子跳到第99站(获胜)或第100站(失败)时,游戏结束(骰子是用一种均匀材料做成的立方体形状的游戏玩具,它的六个面分别标有点数1,2,3,4,5,6).(1)求,,,并根据棋子跳到第n站的情况,试用和表示;(2)求证:为等比数列;(3)求玩该游戏获胜的概率.【思路引导】(1)在第0站是必然事件,所以.棋子跳到第1站,只有一种情形,第一次掷骰子出现奇数点,可求出,棋子跳到第2站,包括两种情形,①第一次掷骰子岀现偶数点,②前两次掷骰子出现奇数点,可求出.棋子跳到第站,包括两种情形,①棋子先跳到第站,又掷骰子出现偶数点,②棋子先跳到第站,又掷骰子出现奇数点,进行求解.
(2)由(1)知,,所以可证.
(3)该游戏获胜的概率,即求,由(2)用累加法可求解.解:(1)棋子开始在第0站是必然事件,所以.棋子跳到第1站,只有一种情形,第一次掷骰子出现奇数点,其概率为,所以.棋子跳到第2站,包括两种情形,①第一次掷骰子岀现偶数点,其概率为;②前两次掷骰子出现奇数点,其概率为,所以.棋子跳到第站,包括两种情形,①棋子先跳到第站,又掷骰子出现偶数点,其概率为;②棋子先跳到第站,又掷骰子出现奇数点,其概率为.故.(2)由(1)知,,所以.又因为,所以是首项为,公比为的等比数列.(3)由(2)知,.所以.所以玩该游戏获胜的概率为.【针对训练】1.【2020届湖南省益阳市高三上学期期末】在数列中,有.(1)证明:数列为等差数列,并求其通项公式;(2)记,求数列的前n项和.【思路引导】(1)由前项和与通项关系,求出的通项公式,再利用等差数列的定义,即可证明;(2)求出数列的通项公式,用裂项相消法,即可求解.解:(1)因为,所以当时,,上述两式相减并整理,得.又因为时,,适合上式,所以.从而得到,所以,所以数列为等差数列,且其通项公式为.(2)由(1)可知,.所以.2.【2020届广东省东莞市高三期末调研测试】已知数列中,且(1)求证:数列为等比数列;(2)求数列的前项和.【思路引导】(1)根据递推公式可得,即可证明;(2)由(1),进而利用分组法求得数列的和即可解:(1)证明:∵,∴,∴,,∴为等比数列,首项为,公比为3(2)解:由(1)得,,∴,3.【2020届安徽省皖东县中联盟上学期高三期末】已知数列的前项和,满足,.(1)求证:数列为等比数列;(2)若,求数列的前项和.【思路引导】(1)利用可得,再证明是定值即可;(2)将代入,然后利用裂项相消法求和.解:(1)由题可知,①当时,,得;当时,,②①-②并整理,得,所以,所以数列是首项为2,公比为2的等比数列;(2)由(1)知,则,所以.4.【湖南省衡阳市2019届高三第二次联考(二模)】已知数列,满足,,,.(1)证明:数列,为等比数列;(2)记为数列的前项和,证明:.【思路引导】(1)将题中条件分别相加和相减,结合等比数列的定义,即可得证.(2)根据(1)结论可求出,则前n项和为两个等比数列的前n项和之和,代入公式,即可求解.解:(1)依题:,两式相加得:,∴为等比数列,两式相减得:,∴为等比数列.(2)由上可得:①,②,两式相加得:,.5.【2020届重庆市高三上学期期末测试卷】已知数列的前n项和为,且.(1)证明:数列是等比数列;(2)设,证明:.【思路引导】(1)由已知当时,可得,整理为,根据等比数列的定义,即可证明结论;(2)由(1)求出,进而求出,根据取等号),要证成立,转化为证等比数列前项和小于或等于,即可证明结论.解:(1)当时,由,令,则,故为等比数列;(2)由(1)得,,,时,取等号),所以原式,所以成立.6.【湖南省衡阳市衡阳县、长宁、金山区2019-2020学年高三上学期12月联考】设,向量,,.(1)试问数列是否为等差数列?为什么?(2)求数列的前项和.【思路引导】(1)先求解出的坐标表示,然后根据数量积的坐标表示求解出的通项公式,再根据定义判断是否为等差数列;(2)根据(1)中结果求出的通项公式,然后根据裂项相消法求解出的表达式.解:(1),.,为常数,是等差数列.(2),.7.【2020届福建省漳州市高三第一次教学质量检测卷】已知数列满足,.(1)证明:数列为等差数列;(2)设,求数列的前项和.【思路引导】(1)在等式两边同时乘以,结合等差数列的定义可证明出数列为等差数列;(2)结合(1)中的结论求出数列的通项公式,进而求出数列的通项公式,然后利用裂项求和法求出数列的前项和.解:(1)由得,又,所以数列首项为,公差为的等差数列;(2)由(1)得,,所以.所以,所以,所以,所以.8.【2020届黑龙江省第一高级中学高三上学期期末数学】已知数列的前项和为,,,.(1)证明:数列为等比数列;(2)已知曲线若为椭圆,求的值;(3)若,求数列的前项和.【思路引导】(1)利用的递推公式证明出为非零常数,即可得出结论;(2)利用(1)中的结论求出,由与之间的关系求出,结合题意得出,可求出的值;(3)求出数列的通项公式,然后利用错位相减法求出.解:(1)对任意的,,则且,所以,数列是以为首项,以为公比的等比数列;(2)由(1)可得,.当时,,也适合上式,所以,.由于曲线是椭圆,则,即,,解得或;(3),,①,②①②得,因此,.9.【江苏省泰州市2019届高三上学期期末考试数学试题】已知数列{}的前n项和为Sn,,且对任意的n∈N*,n≥2都有.(1)若0,,求r的值;(2)数列{}能否是等比数列?说明理由;(3)当r=1时,求证:数列{}是等差数列.【思路引导】(1)令,得到,再将和用项来表示,再结合条件,求得结果;(2)假设其为等比数列,利用,结合,得到关于的方程,求解得出或,将其回代检验得出答案;(3)将r=1代入上式,类比着写出,两式相减得到,进一步凑成,结合,从而证得数列是以为首项,2为公差的等差数列.解:(1)令n=2,得:,即:,化简,得:,因为,,,所以,,解得:r=1.(2)假设是等比数列,公比为,则,且,解得或,由,可得,所以,两式相减,整理得,两边同除以,可得,因为,所以,所以上式不可能对任意恒成立,故不可能是等比数列.(3)时,令,整理得,又由可知,令,可得,解得,由(2)可知,所以,两式相减,整理得,所以,两式相减,可得,因为,所以,即,又因为,所以数列是以为首项,2为公差的等差数列.10.【天津市新华中学2019届高三高考模拟】已知等比数列的前项和为,公比.数列满足.(1)求数列的通项公式;(2)证明数列为等差数列;(3)设数列的通项公式为:,其前项和为,求.【思路引导】(1)由题意分别求得数列的首项和公比即可确定数列的通项公式;(2)由题意结合递推关系证明为定值即可证明数列为等差数列;(3)首项求得的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度卫星传输服务合同4篇
- 2024年版:员工辞职与公司解除劳动合同协议书2篇
- 二零二四年度体育运动场智能化系统施工合同2篇
- 2024年汽车保养中心维修合同2篇
- 2024年度房地产经纪服务协议3篇
- 2024年货品交易双方责任合同2篇
- 2024年款汽车及车牌临时租赁合同2篇
- 水利设施2024年清淤作业合同2篇
- 2024年广告位租赁合同协议书3篇
- 2024年地标建筑停车位长期租赁条款2篇
- 高中语文教师资格考试学科知识与教学能力试卷及解答参考(2025年)
- 幼儿园大班健康《保护我们的牙齿》课件
- 2025届高考政治二轮复习参考题型专练一曲线图类含解析
- 中国全光网络建设行业需求现状调研与发展前景趋势分析研究报告(2024-2030版)
- 2024河南省科技馆招聘23人历年高频难、易错点500题模拟试题附带答案详解
- 广东省佛山市顺德区2024-2025学年三年级上学期月考英语试卷
- 中国电信:分布式智算中心无损网络技术白皮书
- 定制旅游行业市场深度分析报告
- Unit 6 Is he your grandpa?第一课时(教学设计+素材)-2023-2024学年译林版(三起)(2024)英语三年级上册
- 高中生物《蛋白质是生命活动的主要承担者》教学设计
- 2024年高考语文新课标I卷作文导写及范文展示
评论
0/150
提交评论