2023届广东省肇庆市端州区南国中学英文学校九年级数学第一学期期末达标测试试题含解析_第1页
2023届广东省肇庆市端州区南国中学英文学校九年级数学第一学期期末达标测试试题含解析_第2页
2023届广东省肇庆市端州区南国中学英文学校九年级数学第一学期期末达标测试试题含解析_第3页
2023届广东省肇庆市端州区南国中学英文学校九年级数学第一学期期末达标测试试题含解析_第4页
2023届广东省肇庆市端州区南国中学英文学校九年级数学第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.任意画一个三角形,其内角和是360°D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球2.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球 B.摸出的是3个黑球C.摸出的是2个白球、1个黑球 D.摸出的是2个黑球、1个白球3.如图,路灯距离地面8米,若身高1.6米的小明在距离路灯的底部(点O)20米的A处,则小明的影子AM的长为()A.1.25米 B.5米 C.6米 D.4米4.如图所示,半径为3的⊙A经过原点O和C(0,2),B是y轴左侧⊙A优弧上的一点,则()A.2 B. C. D.5.若,则()A. B. C.1 D.6.在△中,=90°,=4,那么的长是().A.5 B.6 C.8 D.97.如图,AB是⊙O的直径,弦CD⊥AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为()A.π B.4π C.π D.π8.如图,⊙O的直径长10,弦AB=8,M是弦AB上的动点,则OM的长的取值范围是()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<59.在同一时刻,身高1.6m的小强在阳光下的影长为0.8m,一棵大树的影长为4.8m,则树的高度为()A.4.8m B.6.4m C.9.6m D.10m10.已知a、b满足a2﹣6a+2=0,b2﹣6b+2=0,则=()A.﹣6 B.2 C.16 D.16或2二、填空题(每小题3分,共24分)11.古希腊时期,人们认为最美人体的肚脐至脚底的长度与身高长度之比是(0.618,称之为黄金分割比例),著名的“断臂维纳斯”便是如此,若某位女性身高为165cm,肚脐到头顶高度为65cm,则其应穿鞋跟为_____cm的高跟鞋才能使人体近似满足黄金分割比例.(精确到1cm)12.如图,是的两条切线,为切点,点分别在线段上,且,则__________.13.函数是关于反比例函数,则它的图象不经过______的象限.14.x台拖拉机,每天工作x小时,x天耕地x亩,则y台拖拉机,每天工作y小时,y天耕____亩.15.如图所示的网格是正方形网格,线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,则α的值为_____.16.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为1.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括1).17.若圆中一条弦长等于半径,则这条弦所对的圆周角的度数为______.18.如图,在△ABC中,∠BAC=90°,∠B=60°,AD⊥BC于点D,则△ABD与△ADC的面积比为________.三、解答题(共66分)19.(10分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,求下列事件的概率:(1)两次取出的小球标号相同;(2)两次取出的小球标号的和等于4.20.(6分)九年级甲班和乙班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球;将两班选手的进球数绘制成如下尚不完整的统计图表:进球数/个1098743乙班人数/个112411平均成绩中位数众数甲班77c乙班ab7(1)表格中b=,c=并求a的值;(2)如果要从这两个班中选出一个成绩较为稳定的班代表年级参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班,请说明理由;如果要争取个人进球数进入学校前三名,你认为应该选择哪个班,请说明理由.21.(6分)如图,点E,F,G,H分别位于边长为a的正方形ABCD的四条边上,四边形EFGH也是正方形,AG=x,正方形EFGH的面积为y.(1)当a=2,y=3时,求x的值;(2)当x为何值时,y的值最小?最小值是多少?22.(8分)如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座边长为(a+b)米的正方形雕像.(1)试用含a、b的式子表示绿化部分的面积(结果要化简).(2)若a=3,b=2,请求出绿化部分的面积.23.(8分)一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们被称为该对角线为相似对角线.(1)如图1,正方形的边长为4,E为的中点,,连结.,求证:为四边形的相似对角线.(2)在四边形中,,,,平分,且是四边形的相似对角线,求的长.(3)如图2,在矩形中,,,点E是线段(不取端点A.B)上的一个动点,点F是射线上的一个动点,若是四边形的相似对角线,求的长.(直接写出答案)24.(8分)如图,抛物线(,b是常数,且≠0)与x轴交于A,B两点,与y轴交于点C.并且A,B两点的坐标分别是A(-1,0),B(3,0)(1)①求抛物线的解析式;②顶点D的坐标为_______;③直线BD的解析式为______;(2)若P为线段BD上的一个动点,其横坐标为m,过点P作PQ⊥x轴于点Q,求当m为何值时,四边形PQOC的面积最大?(3)若点M是抛物线在第一象限上的一个动点,过点M作MN∥AC交轴于点N.当点M的坐标为_______时,四边形MNAC是平行四边形.25.(10分)已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).26.(10分)为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.分数段频数频率74.5~79.520.0579.5~84.5m0.284.5~89.5120.389.5~94.514n94.5~99.540.1(1)表中m=__________,n=____________;(2)请在图中补全频数直方图;(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在_________分数段内;(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.

参考答案一、选择题(每小题3分,共30分)1、D【分析】利用折线统计图可得出试验的频率在0.33左右,进而得出答案.【详解】解:A、抛一枚硬币,出现正面朝上的概率为0.5,不符合这一结果,故此选项错误;B、掷一个正六面体的骰子,出现3点朝上为,不符合这一结果,故此选项错误;C、任意画一个三角形,其内角和是360°的概率为:0,不符合这一结果,故此选项错误;D、从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球的概率为:,符合这一结果,故此选项正确.故选:D.【点睛】本题考查频率估算概率,关键在于通过图象得出有利信息.2、A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.3、B【分析】易得:△ABM∽△OCM,利用相似三角形对应边成比例可得出小明的影子AM的长.【详解】如图,根据题意,易得△MBA∽△MCO,

根据相似三角形的性质可知,即,

解得AM=5m.

则小明的影子AM的长为5米.

故选:B.【点睛】此题考查相似三角形的应用,利用相似三角形对应边成比例列出比例式是解题的关键.4、C【分析】根据题意连接CD,根据勾股定理求出OD,根据正切的定义求出tan∠D,根据圆周角定理得到∠B=∠D,等量代换即可.【详解】解:连接CD(圆周角定理CD过圆心A),在Rt△OCD中,CD=6,OC=2,则OD=,tan∠D=,由圆周角定理得∠B=∠D,则tan∠B=,故选:C.【点睛】本题考查圆周角定理、锐角三角函数的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、熟记锐角三角函数的定义是解题的关键.5、D【分析】令=k,则x=2k,y=3k,z=4k,再代入分式进行计算即可.【详解】解:令=k,则x=2k,y=3k,z=4k,

∴.故选:D.【点睛】本题考查的是分式的化简求值,在解答此类题目时要注意,当条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.6、B【分析】根据余弦值等于邻边比斜边即可得到答案.【详解】在△中,=90°,=4,,∵,∴,∴AB=6,故选:B.【点睛】此题考查三角函数,熟记余弦值的边的比的关系是解题的关键.7、D【分析】根据圆周角定理求出∠COB,进而求出∠AOC,再利用垂径定理以及锐角三角函数关系得出OC的长,再结合扇形面积求出答案.【详解】解:∵,∴,∴,∵,,∴,,∴,∴阴影部分的面积为,

故选:D.【点睛】本题考查了圆周角定理,垂径定理,解直角三角形,扇形面积公式等知识点,能求出线段OC的长和∠AOC的度数是解此题的关键.8、A【详解】解:的直径为10,半径为5,当时,最小,根据勾股定理可得,与重合时,最大,此时,所以线段的的长的取值范围为,故选A.【点睛】本题考查垂径定理,掌握定理内容正确计算是本题的解题关键.9、C【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】设树高为x米,所以x=4.8×2=9.6.这棵树的高度为9.6米故选C.【点睛】考查相似三角形的应用,掌握同一时刻物高和影长成正比是解题的关键.10、D【分析】当a=b时,可得出=2;当a≠b时,a、b为一元二次方程x2-6x+2=0的两根,利用根与系数的关系可得出a+b=6,ab=2,再将其代入=中即可求出结论.【详解】当a=b时,=1+1=2;

当a≠b时,∵a、b满足a2-6a+2=0,b2-6b+2=0,

∴a、b为一元二次方程x2-6x+2=0的两根,

∴a+b=6,ab=2,

∴==1.

故选:D.【点睛】此题考查根与系数的关系,分a=b及a≠b两种情况,求出的值是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据黄金分割的概念,列出方程直接求解即可.【详解】设她应选择高跟鞋的高度是xcm,

则≈0.618,

解得:x≈1,且符合题意.

故答案为1.【点睛】此题考查黄金分割的应用,解题关键是明确黄金分割所涉及的线段的比.12、61°【分析】根据切线长定理,可得PA=PB,然后根据等腰三角形的性质和三角形的内角和定理即可求出∠FAD=∠DBE=61°,利用SAS即可证出△FAD≌△DBE,从而得出∠AFD=∠BDE,然后根据三角形外角的性质即可求出∠EDF.【详解】解:∵是的两条切线,∠P=58°∴PA=PB∴∠FAD=∠DBE=(180°-∠P)=61°在△FAD和△DBE中∴△FAD≌△DBE∴∠AFD=∠BDE,∵∠BDF=∠BDE+∠EDF=∠AFD+∠FAD∴∠EDF=∠FAD=61°故答案为:61°【点睛】此题考查的是切线长定理、等腰三角形的性质、三角形的内角和定理、全等三角形的判定及性质和三角形外角的性质,掌握切线长定理、等边对等角和全等三角形的判定及性质是解决此题的关键.13、第一、三象限【解析】试题解析:函数是关于的反比例函数,解得:比例系数它的图象在第二、四象限,不经过第一、三象限.故答案为第一、三象限.14、【分析】先求出一台拖拉机1小时的工作效率,然后求y台拖拉机在y天,每天工作y小时的工作量.【详解】一台拖拉机1小时的工作效率为:∴y台拖拉机,y天,每天y小时的工作量=故答案为:【点睛】本题考查工程问题,解题关键是求解出一台拖拉机1小时的工作效率.15、60°或120°【解析】线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,切点为C′和C″,连接OC′、OC″,根据切线的性质得OC′⊥AB′,OC″⊥AB″,利用直角三角形30度的判定或三角函数求出∠OAC′=30°,从而得到∠BAB′=60°,同理可得∠OAC″=30°,则∠BAB″=120°.【详解】线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,切点为C′和C″,连接OC′、OC″,则OC′⊥AB′,OC″⊥AB″,在Rt△OAC′中,∵OC′=1,OA=2,∴∠OAC′=30°,∴∠BAB′=60°,同理可得∠OAC″=30°,∴∠BAB″=120°,综上所述,α的值为60°或120°.故答案为60°或120°.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了旋转的性质和直角三角形的性质.16、9或2或3.【解析】分析:共有三种情况:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为2;②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为3;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.详解:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为2.②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为3;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.故答案为9或2或3.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.17、30°或150°【解析】与半径相等的弦与两条半径可构成等边三角形,所以这条弦所对的圆心角为60°,而弦所对的圆周角两个,根据圆内接四边形对角互补可知,这两个圆周角互补,其中一个圆周角的度数为12×60故答案为30°或150°.18、1:1【分析】根据∠BAC=90°,可得∠BAD+∠CAD=90°,再根据垂直的定义得到∠ADB=∠CDA=90°,利用三角形的内角和定理可得∠B+∠BAD=90°,根据同角的余角相等得到∠B=∠CAD,利用两对对应角相等两三角形相似得到△ABD∽△CAD,由tanB=tan60°=,再根据相似三角形的面积比等于相似比(对应边的之比)的平方即可求出结果.【详解】:∵∠BAC=90°,

∴∠BAD+∠CAD=90°,

又∵AD⊥BC,

∴∠ADB=∠CDA=90°,

∴∠B+∠BAD=90°,

∴∠B=∠CAD,又∠ADB=∠CDA=90°,

∴△ABD∽△CAD,

∴,

∵∠B=60°,

∴,

∴.

故答案为1:1.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似比即为对应边之比,周长比等于相似比,面积之比等于相似比的平方是解决问题的关键.三、解答题(共66分)19、(1)(2)【解析】试题分析:首先根据题意进行列表,然后求出各事件的概率.试题解析:(1)P(两次取得小球的标号相同)=;(2)P(两次取得小球的标号的和等于4)=.考点:概率的计算.20、(1)1,1,a的值为1;(2)要选出一个成绩较稳定的班级争夺团体第一名,选择甲班,因为乙班数据的离散程度较大,发挥不稳定;要争取个人进球数进入学校前三名,则选择乙班,要看出现高分的可能性,乙班个人成绩在9分以上的人数比甲班多,因此选择乙班.【分析】(1)根据已知信息,将乙班的选手的进球数量从小到大排列,计算处在正中间的两个数的平均数即可;根据已知信息,甲班选手的进球数量中出现次数最多的进球数即为c的值;先计算乙班总进球数,再用总数除以人数即可;(2)从这两个班中选出一个成绩较为稳定的班代表年级参加学校的投篮比赛,要看两个班的数据离散程度;如果要争取个人进球数进入学校前三名,要根据个人进球数在9个以上的人数,哪个班多就从哪个班选.【详解】解:(1)乙班进球数从小到大排列后处在第5、6位的数都是1个,因此乙班进球数的中位数是1个;根据图表,甲班进球数出现次数最多的是1个,因此甲班进球数的众数为c=1;a=.故答案为:1;1;a的值为1.(2)要想选取成绩较稳定的班级来争夺总进球数团体第一名,选择甲班较好,甲班的平均数虽然与乙班相同,但是=1.2=4∴乙班数据的离散程度较大,发挥不稳定,因此选择甲班;要争取个人进球数进入学校前三名,则选择乙班,要看出现高分的可能性,乙班个人成绩在9分以上的人数比甲班多.因此选择乙班.【点睛】本题主要考查平均数、中位数、众数以及方差的意义,掌握平均数、中位数、众数的求解方法以及方差的意义是解答本题的关键.21、(1)x=;(1)当x=a(即E在AB边上的中点)时,正方形EFGH的面积最小,最小的面积为a1.【分析】(1)设正方形ABCD的边长为a,AE=x,则BE=a﹣x,易证△AHE≌△BEF≌△CFG≌△DHG,再利用勾股定理求出EF的长,进而得到正方形EFGH的面积;(1)利用二次函数的性质即可求出面积的最小值.【详解】解:设正方形ABCD的边长为a,AE=x,则BE=a﹣x,∵四边形EFGH是正方形,∴EH=EF,∠HEF=90°,∴∠AEH+∠BEF=90°,∵∠AEH+∠AHE=90°,∴∠AHE=∠BEF,在△AHE和△BEF中,,∴△AHE≌△BEF(AAS),同理可证△AHE≌△BEF≌△CFG≌△DHG,∴AE=BF=CG=DH=x,AH=BE=CF=DG=a﹣x∴EF1=BE1+BF1=(a﹣x)1+x1=1x1﹣1ax+a1,∴正方形EFGH的面积y=EF1=1x1﹣1ax+a1,当a=1,y=3时,1x1﹣4x+4=3,解得:x=;(1)∵y=1x1﹣1ax+a1=1(x﹣a)1+a1,即:当x=a(即E在AB边上的中点)时,正方形EFGH的面积最小,最小的面积为a1.【点睛】本题考查了二次函数的应用,正方形的性质、全等三角形的判定和性质以及二次函数的性质,题目的综合性较强,难度中等.22、(1)5a2+3ab;(2)63.【分析】(1)由长方形面积减去正方形面积表示出绿化面积即可;(2)将a与b的值代入计算即可求出值.【详解】解:(1)根据题意得:(3a+b)(2a+b)-(a+b)2=6a2+5ab+b2-a2-2ab-b2=5a2+3ab;(2)当a=3,b=2时,原式=.【点睛】本题考查了整式的混合运算,熟练掌握整式混合运算的法则是解本题的关键.23、(1)见解析(2)或;(1)或或1【分析】(1)根据已知中相似对角线的定义,只要证明△AEF∽△ECF即可;

(2)AC是四边形ABCD的相似对角线,分两种情形:△ACB△ACD或△ACB△ADC,分别求解即可;

(1)分三种情况①当△AEF和△CEF关于EF对称时,EF是四边形AECF的相似对角线.②取AD中点F,连接CF,将△CFD沿CF翻折得到△CFD′,延长CD′交AB于E,则可得出EF是四边形AECF的相似对角线.③取AB的中点E,连接CE,作EF⊥AD于F,延长CB交FE的延长线于M,则可证出EF是四边形AECF的相似对角线.此时BE=1;【详解】解:(1)∵四边形ABCD是正方形,

∴AB=BC=CD=AD=4,

∵E为的中点,,∴AE=DE=2,∵∠A=∠D=90°,

∴△AEF∽△DCE,

∴∠AEF=∠DCE,∵∠DCE+∠CED=90°,

∴∠AEF+∠CED=90°,

∴∠FEC=∠A=90°,∴△AEF∽△ECF,

∴EF为四边形AECF的相似对角线.(2)∵平分,∴∠BAC=∠DAC=60°∵AC是四边形ABCD的相似对角线,

∴△ACB△ACD或△ACB△ADC

①如图2,当△ACB△ACD时,此时,△ACB≌△ACD∴AB=AD=1,BC=CD,

∴AC垂直平分DB,

在Rt△AOB中,∵AB=1,∠ABO=10°,②当△ACB△ADC时,如图1∴∠ABC=∠ACD∴AC2=AB•AD,

∵,∴6=1AD,

∴AD=2,

过点D作DHAB于H在Rt△ADH中,∵∠HAD=60°,AD=2,在Rt△BDH中,综上所述,的长为:或(1)①如图4,当△AEF和△CEF关于EF对称时,EF是四边形AECF的相似对角线,

设AE=EC=x,

在Rt△BCE中,∵EC2=BE2+BC2,

∴x2=(6-x)2+42,

解得x=,

∴BE=AB-AE=6-=.

②如图5中,如图取AD中点F,连接CF,将△CFD沿CF翻折得到△CFD′,延长CD′交AB于E,则EF是四边形AECF的相似对角线.

∵△AEF∽△DFC,∴③如图6,取AB的中点E,连接CE,作EF⊥AD于F,延长CB交FE的延长线于M,则EF是四边形AECF的相似对角线.则BE=1.

综上所述,满足条件的BE的值为或或1.【点睛】本题主要考查了相似形的综合题、相似三角形的判定和性质、矩形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.24、(1)①;②(1,4);③;(2)当时,S最大值=;(3)(2,3)【分析】(1)①把点A、点B的坐标代入,求出,b即可;②根据顶点坐标公式求解;③设直线BD的解析式为,将点B、点D的坐标代入即可;(2)求出点C坐标,利用直角梯

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论