四川省成都市金牛区2025届九上数学期末监测试题含解析_第1页
四川省成都市金牛区2025届九上数学期末监测试题含解析_第2页
四川省成都市金牛区2025届九上数学期末监测试题含解析_第3页
四川省成都市金牛区2025届九上数学期末监测试题含解析_第4页
四川省成都市金牛区2025届九上数学期末监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都市金牛区2025届九上数学期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,⊙O的半径为1,点O到直线的距离为2,点P是直线上的一个动点,PA切⊙O于点A,则PA的最小值是()A.1 B. C.2 D.2.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为(

)A. B. C. D.3.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.4.已知抛物线y=﹣x2+4x+3,则该抛物线的顶点坐标为()A.(﹣2,7) B.(2,7) C.(2,﹣9) D.(﹣2,﹣9)5.如图,、分别切⊙于、,,⊙半径为,则的长为()A. B. C. D.6.某篮球队14名队员的年龄如表:年龄(岁)18192021人数5432则这14名队员年龄的众数和中位数分别是()A.18,19 B.19,19 C.18,4 D.5,47.如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>28.如图,AB为⊙O的直径,点C、D在⊙O上,∠BAC=50°,则∠ADC为()A.40° B.50° C.80° D.100°9.下面空心圆柱形物体的左视图是()A. B. C. D.10.设点和是反比例函数图象上的两个点,当<<时,<,则一次函数的图象不经过的象限是A.第一象限 B.第二象限 C.第三象限 D.第四象限11.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A. B. C. D.12.下列几何体中,主视图和左视图都是矩形的是()A. B. C. D.二、填空题(每题4分,共24分)13.圆锥侧面展开图的圆心角的度数为,母线长为5,该圆锥的底面半径为________.14.如图是二次函数的部分图象,由图象可知不等式的解集是_______.15.已知扇形的面积为4π,半径为6,则此扇形的圆心角为_____度.16.二次函数图象的对称轴是______________.17.若关于的一元二次方程有实数根,则的取值范围是_____.18.小天想要计算一组数据92,90,94,86,99,85的方差S02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为S12,则S12__S02(填“>”,“=”或”<”)三、解答题(共78分)19.(8分)如图,⊙中,弦与相交于点,,连接.求证:⑴;⑵.20.(8分)我市有2000名学生参加了2018年全省八年级数学学业水平测试.其中有这样一题:如图,分别以线段BD的端点B、D为圆心,相同的长为半径画弧,两弧相交于A、C两点,连接AB、AD、CB、CD.若AB=2,BD=2,求四边形ABCD的面积.统计我市学生解答和得分情况,并制作如下图表:(1)求学业水平测试中四边形ABCD的面积;(2)请你补全条形统计图;(3)我市该题的平均得分为多少?(4)我市得3分以上的人数为多少?21.(8分)为做好全国文明城市的创建工作,我市交警连续天对某路口个“岁以下行人”和个“岁及以上行人”中出现交通违章的情况进行了调查统计,将所得数据绘制成如下统计图.请根据所给信息,解答下列问题.(1)求这天“岁及以上行人”中每天违章人数的众数.(2)某天中午下班时段经过这一路口的“岁以下行人”为人,请估计大约有多少人会出现交通违章行为.(3)请根据以上交通违章行为的调查统计,就文明城市创建减少交通违章提出合理建议.22.(10分)如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD,BC交于点P,连结AC.(1)求证:AB=AP;(2)若AB=10,DP=2,①求线段CP的长;②过点D作DE⊥AB于点E,交AC于点F,求△ADF的面积.23.(10分)如图,平面直角坐标系内,二次函数的图象经过点,与轴交于点.求二次函数的解析式;点为轴下方二次函数图象上一点,连接,若的面积是面积的一半,求点坐标.24.(10分)如图,在△ABC中,∠C=60°,AB=4.以AB为直径画⊙O,交边AC于点D.AD的长为,求证:BC是⊙O的切线.25.(12分)已知关于x的方程.求证:不论m为何值,方程总有实数根;当m为何整数时,方程有两个不相等的正整数根?26.如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.求证:△ABD∽△CAE

参考答案一、选择题(每题4分,共48分)1、B【分析】因为PA为切线,所以△OPA是直角三角形.又OA为半径为定值,所以当OP最小时,PA最小.根据垂线段最短,知OP=1时PA最小.运用勾股定理求解.【详解】解:作OP⊥a于P点,则OP=1.

根据题意,在Rt△OPA中,AP==故选:B.【点睛】此题考查了切线的性质及垂线段最短等知识点,如何确定PA最小时点P的位置是解题的关键,难度中等偏上.2、A【解析】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,∴这个斜坡的水平距离为:=10m,∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.3、B【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.4、B【分析】将题目中的函数解析式化为顶点式,即可写出该抛物线的顶点坐标.【详解】∵抛物线y=﹣x2+4x+3=﹣(x﹣2)2+7,∴该抛物线的顶点坐标是(2,7),故选:B.【点睛】本题考查二次函数的顶点式,解答本题的关键是明确题意,利用二次函数的性质解答.5、C【分析】连接PO、AO、BO,由角平分线的判定定理得,PO平分∠APB,则∠APO=30°,得到PO=4,由勾股定理,即可求出PA.【详解】解:连接PO、AO、BO,如图:∵、分别切⊙于、,∴,,AO=BO,∴PO平分∠APB,∴∠APO==30°,∵AO=2,∠PAO=90°,∴PO=2AO=4,由勾股定理,则;故选:C.【点睛】本题考查了圆的切线的性质,角平分线的判定定理,以及勾股定理,解题的关键是掌握角平分线的判定定理,得到∠APO=30°.6、A【分析】根据众数和中位数的定义求解可得.【详解】∵这组数据中最多的数是18,∴这14名队员年龄的众数是18岁,∵这组数据中间的两个数是19、19,∴中位数是=19(岁),故选:A.【点睛】本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.7、D【分析】先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,

∴A、B两点关于原点对称,

∵点A的横坐标为1,∴点B的横坐标为-1,

∵由函数图象可知,当-1<x<0或x>1时函数y1=k1x的图象在的上方,

∴当y1>y1时,x的取值范围是-1<x<0或x>1.

故选:D.【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y1时x的取值范围是解答此题的关键.8、A【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.解:连结BC,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故选A.考点:圆周角定理.9、A【解析】试题分析:找出从几何体的左边看所得到的视图即可.解:从几何体的左边看可得,故选A.10、A【解析】∵点和是反比例函数图象上的两个点,当<<1时,<,即y随x增大而增大,∴根据反比例函数图象与系数的关系:当时函数图象的每一支上,y随x的增大而减小;当时,函数图象的每一支上,y随x的增大而增大.故k<1.∴根据一次函数图象与系数的关系:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.因此,一次函数的,,故它的图象经过第二、三、四象限,不经过第一象限.故选A.11、B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则AB=BD.cos∠ACB=,故选B.12、C【分析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.【详解】A.主视图为圆形,左视图为圆,故选项错误;B.主视图为三角形,左视图为三角形,故选项错误;C.主视图为矩形,左视图为矩形,故选项正确;D.主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.二、填空题(每题4分,共24分)13、1【分析】设该圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,然后解关于r的方程即可.【详解】设该圆锥的底面半径为r,根据题意得,解得.故答案为1.【点睛】本题考查圆锥的计算,解题的关键是知道圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14、【解析】求方程的解即是求函数图象与x轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x轴的一个交点为5,所以,另一交点为2-3=-1.∴x1=-1,x2=5.∴不等式的解集是.故答案为【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.15、1【分析】利用扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则由此构建方程即可得出答案.【详解】解:设该扇形的圆心角度数为n°,∵扇形的面积为4π,半径为6,∴4π=,解得:n=1.∴该扇形的圆心角度数为:1°.故答案为:1.【点睛】此题考查了扇形面积的计算,熟练掌握公式是解此题的关键.16、直线【分析】根据二次函数的顶点式直接得出对称轴.【详解】二次函数图象的对称轴是x=1.故答案为:直线x=1【点睛】本题考查的是根据二次函数的顶点式求对称轴.17、且k≠1.【分析】根据一元二次方程的定义和判别式的意义得到且,然后求出两个不等式的公共部分即可.【详解】解:根据题意得且,

解得:且k≠1.

故答案是:且k≠1.【点睛】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2-4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.18、=【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则S12=S1.故答案为:=.【点睛】本题考查方差的意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.三、解答题(共78分)19、(1)见解析;(2)见解析.【分析】(1)由AB=CD知,即,据此可得答案;(2)由知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【详解】证明(1)∵AB=CD,∴,即,∴;(2)∵,∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.【点睛】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.20、(1);(2)见解析;(3)3.025分;(4)1578人.【分析】(1)根据作图得到AC是BD的垂直平分线,利用勾股定理可求得的长,从而求得答案;(2)根据条形统计图中的数据可以补全条形统计图;(3)根据平均数计算公式计算即可.(4)计算得3分与得4分的人数和即可.【详解】(1)如图,连接AC交BD于E,根据作图:分别以线段BD的端点B、D为圆心,相同的长为半径画弧,两弧相交于A、C两点,∴AC是BD的垂直平分线,且AB=CB、AD=CD,∴AB=CB=AD=CD.在中,AB=2,,∴,∴;(2)由条形统计图:,如图:(3)由条形统计图:得2分的人数有:(人),得3分的人数有:(人),得4分的人数有:(人),∴平均得分为:(分).(4)由(3)的计算得:=1578(人).【点睛】本题考查的是条形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.21、(1);(2)人;(3)应加大对老年人的交通安全教育(答案不唯一)【分析】(1)根据众数的概念求解可得;

(2)利用样本估计总体思想求解可得;

(3)根据折线图中的数据提出合理的建议均可,答案不唯一.【详解】(1)这天“岁及岁以上行人”中每天违章人数有三天是8人,出现次数最多,∴这天“岁及岁以上行人”中每天违章人数的众数为:;(2)估计出现交通违章行为的人数大约为:;(3)由折线统计图知,“岁及岁以上行人”违章次数明显多于“岁以下行人”,所以应加大对老年人的交通安全教育.(答案不唯一)【点睛】本题考查的是折线统计图的运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22、(1)见解析;(2)①PC=;②S△ADF=.【分析】(1)利用等角对等边证明即可;(2)①利用勾股定理分别求出BD,PB,再利用等腰三角形的性质即可解决问题;②作FH⊥AD于H,首先利用相似三角形的性质求出AE,DE,再证明AE=AH,设FH=EF=x,利用勾股定理构建方程解决问题即可.【详解】(1)证明:∵=,∴∠BAC=∠CAP,∵AB是直径,∴∠ACB=∠ACP=90°,∵∠ABC+∠BAC=90°,∠P+∠CAP=90°,∴∠ABC=∠P,∴AB=AP.(2)①解:连接BD.∵AB是直径,∴∠ADB=∠BDP=90°,∵AB=AP=10,DP=2,∴AD=10﹣2=8,∴BD===6,∴PB===2,∵AB=AP,AC⊥BP,∴BC=PC=PB=,∴PC=.②解:作FH⊥AD于H.∵DE⊥AB,∴∠AED=∠ADB=90°,∵∠DAE=∠BAD,∴△ADE∽△ABD,∴==,∴==,∴AE=,DE=,∵∠FEA=∠FEH,FE⊥AE,FH⊥AH,∴FH=FE,∠AEF=∠AHF=90°,∵AF=AF,∴Rt△AFE≌Rt△AFH(HL),∴AH=AE=,DH=AD﹣AH=,设FH=EF=x,在Rt△FHD中,则有(﹣x)2=x2+()2,解得x=,∴S△ADF=•AD•FH=×8×=.故答案为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论