辽宁省丹东市凤城市白旗中学2025届九上数学期末质量跟踪监视模拟试题含解析_第1页
辽宁省丹东市凤城市白旗中学2025届九上数学期末质量跟踪监视模拟试题含解析_第2页
辽宁省丹东市凤城市白旗中学2025届九上数学期末质量跟踪监视模拟试题含解析_第3页
辽宁省丹东市凤城市白旗中学2025届九上数学期末质量跟踪监视模拟试题含解析_第4页
辽宁省丹东市凤城市白旗中学2025届九上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省丹东市凤城市白旗中学2025届九上数学期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,AB是⊙O的直径,CD是⊙O的弦.若∠BAD=24°,则的度数为()A.24° B.56° C.66° D.76°2.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A. B. C. D.3.在△ABC中,D是AB中点,E是AC中点,若△ADE的面积是3,则△ABC的面积是()A.3 B.6 C.9 D.124.某商品原价格为100元,连续两次上涨,每次涨幅10%,则该商品两次上涨后的价格为()A.121元 B.110元 C.120元 D.81元5.一个几何体的三视图如图所示,则这个几何体是()A.球体 B.圆锥 C.棱柱 D.圆柱6.在半径等于5cm的圆内有长为cm的弦,则此弦所对的圆周角为A.60° B.120° C.60°或120° D.30°或120°7.下列图形中,既是中心对称图形,又是轴对称图形的是()A.等边三角形 B.平行四边形 C.等腰三角形 D.菱形8.已知:如图,某学生想利用标杆测量一棵大树的高度,如果标杆EC的高为1.6m,并测得BC=2.2m,CA=0.8m,那么树DB的高度是()A.6m B.5.6m C.5.4m D.4.4m9.关于反比例函数y=﹣,下列说法错误的是()A.图象经过点(1,﹣3)B.图象分布在第一、三象限C.图象关于原点对称D.图象与坐标轴没有交点10.下列事件中,必然发生的是()A.某射击运动射击一次,命中靶心 B.通常情况下,水加热到100℃时沸腾C.掷一次骰子,向上的一面是6点 D.抛一枚硬币,落地后正面朝上二、填空题(每小题3分,共24分)11.甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,如果甲比赛成绩的方差为S甲2=16.7,乙比赛成绩的方差为S乙2=28.3,那么成绩比较稳定的是_____(填甲或乙)12.如图,在△ABC中,∠C=90°,∠ADC=60°,∠B=30°,若CD=3cm,则BD=_____cm.13.如图,菱形AD的边长为2,对角线AC、BD相交于点O,BD=2,分别以AB、BC为直径作半圆,则图中阴影部分的面积为__________.14.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x,则列出方程是______________.15.黄冈中学是百年名校,百年校庆上的焰火晚会令很多人记忆犹新.有一种焰火升高高度为h(m)与飞行时间t(s)的关系式是,若这种焰火在点燃升空后到最高处引爆,则从点火到引爆所需时间为__________s.16.同一个圆中内接正三角形、内接正四边形、内接正六边形的边长之比为___________.17.已知点A关于原点的对称点坐标为(﹣1,2),则点A关于x轴的对称点的坐标为_________18.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m.三、解答题(共66分)19.(10分)(1)(问题发现)如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为(2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.20.(6分)已知抛物线,求证:无论为何值,抛物线与轴总有两个交点.21.(6分)阅读材料:材料2若一元二次方程ax2+bx+c=0(a≠0)的两个根为x2,x2则x2+x2=﹣,x2x2=.材料2已知实数m,n满足m2﹣m﹣2=0,n2﹣n﹣2=0,且m≠n,求的值.解:由题知m,n是方程x2﹣x﹣2=0的两个不相等的实数根,根据材料2得m+n=2,mn=﹣2,所以=﹣2.根据上述材料解决以下问题:(2)材料理解:一元二次方程5x2+20x﹣2=0的两个根为x2,x2,则x2+x2=,x2x2=.(2)类比探究:已知实数m,n满足7m2﹣7m﹣2=0,7n2﹣7n﹣2=0,且m≠n,求m2n+mn2的值:(2)思维拓展:已知实数s、t分别满足29s2+99s+2=0,t2+99t+29=0,且st≠2.求的值.22.(8分)为了“城市更美好、人民更幸福”,我市开展“三城联创”活动,环卫部门要求垃圾按三类分别装袋、投放,其中类指废电池,过期药品等有毒垃圾,类指剩余食品等厨余垃圾,类指塑料、废纸等可回收垃圾,甲、乙两人各投放一袋垃圾.(1)甲投放的垃圾恰好是类的概率是;(2)用树状图或表格求甲、乙两人投放的垃圾是不同类别的概率.23.(8分)如图1,抛物线y=﹣x2+bx+c交x轴于点A(-4,0)和点B,交y轴于点C(0,4).(1)求抛物线的函数表达式;(2)如图2,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,当△ADC面积有最大值时,在抛物线对称轴上找一点M,使DM+AM的值最小,求出此时M的坐标;(3)点Q在直线AC上的运动过程中,是否存在点Q,使△BQC为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.24.(8分)某公司2019年10月份营业额为万元,12月份营业额达到万元,求该公司两个月营业额的月平均增长率.25.(10分)(1)2y2+4y=y+2(用因式分解法)(2)x2﹣7x﹣18=0(用公式法)(3)4x2﹣8x﹣3=0(用配方法)26.(10分)已知关于的一元二次方程

有实根.(1)求的取值范围;(2)求该方程的根.

参考答案一、选择题(每小题3分,共30分)1、C【分析】先求出∠B的度数,然后再根据圆周角定理的推论解答即可.【详解】∵AB是⊙O的直径∴∵∠BAD=24°∴又∵∴=66°故答案为:C.【点睛】本题考查了圆周角定理的推论:①在同圆或等圆中同弧或等弧所对圆周角相等;②直径所对圆周角等于90°2、D【分析】用列表法或树状图法可以列举出所有等可能出现的结果,然后看符合条件的占总数的几分之几即可.【详解】解:两次摸球的所有的可能性树状图如下:第一次第二次开始∴两次都是红球.故选D.【点睛】考查用树状图或列表法,求等可能事件发生的概率,关键是列举出所有等可能出现的结果数,然后用分数表示,同时注意“放回”与“不放回”的区别.3、D【分析】根据相似三角形的性质与判定即可求出答案.【详解】解:∵D是AB中点,E是AC中点,∴DE是△ABC的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∴S△ABC=4S△ADE=12,故选:D.【点睛】本题考查了相似三角形的面积问题,掌握相似三角形的性质与判定是解题的关键.4、A【分析】依次列出每次涨价后的价格即可得到答案.【详解】第一次涨价后的价格为:,第二次涨价后的价格为:121(元),故选:A.【点睛】此题考查代数式的列式计算,正确理解题意是解题的关键.5、D【解析】试题分析:观察可知,这个几何体的俯视图为圆,主视图与左视图都是矩形,所以这个几何体是圆柱,故答案选D.考点:几何体的三视图.6、C【分析】根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.【详解】如图所示,∵OD⊥AB,∴D为AB的中点,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.7、D【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,针对每一个选项进行分析.【详解】解:A、是轴对称图形,不是中心对称图形.故此选项错误;B、不是轴对称图形,是中心对称图形.故此选项错误;C、是轴对称图形,不是中心对称图形.故此选项错误;D、是轴对称图形,也是中心对称图形.故此选项正确;故选D.8、A【分析】先根据相似三角形的判定定理得出Rt△ACE∽Rt△ABD,再根据相似三角形的对应边成比例即可求出BD的长.【详解】解:∵EC∥AB,BD⊥AB,∴EC∥BD,∠ACE=∠ABD=90°,在Rt△ACE∽Rt△ABD中,∠A=∠A,∠ACE=∠ABD=90°,∴Rt△ACE∽Rt△ABD,∴,即,解得BD=6m.故选A.【点睛】本题考查的是相似三角形的应用,用到的知识点为:相似三角形的对应边成比例.9、B【解析】反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.根据反比例函数的性质并结合其对称性对各选项进行判断.【详解】A、把点(1,﹣3)代入函数解析式,﹣3=﹣3,故本选项正确,不符合题意,B、∵k=﹣2<0,∴图象位于二、四象限,且在每个象限内,y随x的增大而增大,故本选项错误,符合题意,C、反比例函数的图象可知,图象关于原点对称,故本选项正确,不符合题意D、∵x、y均不能为0,故图象与坐标轴没有交点,故本选项正确,不符合题意.故选:B.【点睛】本题主要考查的是反比例函数的性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握.10、B【解析】A、某射击运动射击一次,命中靶心,随机事件;B、通常加热到100℃时,水沸腾,是必然事件.C、掷一次骰子,向上的一面是6点,随机事件;D抛一枚硬币,落地后正面朝上,随机事件;故选B.二、填空题(每小题3分,共24分)11、甲【分析】

【详解】∵S甲2=16.7,S乙2=28.3,∴S甲2<S乙2,∴甲的成绩比较稳定,故答案为甲.12、1【分析】根据30°直角三角形的比例关系求出AD,再根据外角定理证明∠DAB=∠B,即可得出BD=AD.【详解】∵∠B=30°,∠ADC=10°,∴∠BAD=∠ADC﹣∠B=30°,∴AD=BD,∵∠C=90°,∴∠CAD=30°,∴BD=AC=2CD=1cm,故答案为:1.【点睛】本题考查30°直角三角形的性质、外交定理,关键在于熟练掌握基础知识并灵活运用.13、-【分析】设BC的中点为M,CD交半圆M于点N,连接OM,MN.易证∆BCD是等边三角形,进而得∠OMN=60°,即可求出;再证四边形OMND是菱形,连接ON,MD,求出,利用,即可求解.【详解】设BC的中点为M,CD交半圆M于点N,连接OM,MN.∵四边形ABCD是菱形,∴BD⊥AC,∴两个半圆都经过点O,∵BD=BC=CD=2,∴∆BCD是等边三角形,∴∠BCD=60°,∴∠OCD=30°,∴∠OMN=60°,∴,∵OD=OM=MN=CN=DN=1,∴四边形OMND是菱形,连接ON,MD,则MD⊥BC,∆OMN是等边三角形,∴MD=CM=,ON=1,∴MD×ON=,∴.故答是:-【点睛】本题主要考查菱形的性质和扇形的面积公式,添加辅助线,构造等边三角形和扇形,利用割补法求面积,是解题的关键.14、=31.1【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解.【详解】根据题意,得:=31.1故答案为:=31.1.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的.15、1【解析】根据关系式可知焰火的运行轨迹是一个开口向下的抛物线,已知焰火在升到最高时引爆,即到达抛物线的顶点时引爆,顶点横坐标就是从点火到引爆所需时间.则t==1s,故答案为1.16、【分析】首先根据题意画出图形,设出圆的半径,分别求出圆中内接正三角形、内接正四边形、内接正六边形的边长,即可得出答案.【详解】设圆的半径为r,如图①,过点O作于点C则如图②,如图③,为等边三角形∴同一个圆中内接正三角形、内接正四边形、内接正六边形的边长之比为故答案为【点睛】本题主要考查圆的半径与内接正三角形,正方形和正六边形的边长之间的关系,能够画出图形是解题的关键.17、(1,2)【分析】利用平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,求出点A的坐标,再利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,求出A点关于x轴的对称点的坐标.【详解】解:∵点A关于原点的对称点的坐标是(-1,2),∴点A的坐标是(1,-2),∴点A关于x轴的对称点的坐标是(1,2),故答案为:(1,2).【点睛】本题考查的知识点是关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.18、24米.【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】设建筑物的高为h米,由题意可得:则4:6=h:36,解得:h=24(米).故答案为24米.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.三、解答题(共66分)19、(1)BE=AF;(2)无变化;(3)﹣1或+1.【解析】(1)先利用等腰直角三角形的性质得出AD=,再得出BE=AB=2,即可得出结论;(2)先利用三角函数得出,同理得出,夹角相等即可得出△ACF∽△BCE,进而得出结论;(3)分两种情况计算,当点E在线段BF上时,如图2,先利用勾股定理求出EF=CF=AD=,BF=,即可得出BE=﹣,借助(2)得出的结论,当点E在线段BF的延长线上,同前一种情况一样即可得出结论.【详解】解:(1)在Rt△ABC中,AB=AC=2,根据勾股定理得,BC=AB=2,点D为BC的中点,∴AD=BC=,∵四边形CDEF是正方形,∴AF=EF=AD=,∵BE=AB=2,∴BE=AF,故答案为BE=AF;(2)无变化;如图2,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC=,∴,∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴=,∴BE=AF,∴线段BE与AF的数量关系无变化;(3)当点E在线段AF上时,如图2,由(1)知,CF=EF=CD=,在Rt△BCF中,CF=,BC=2,根据勾股定理得,BF=,∴BE=BF﹣EF=﹣,由(2)知,BE=AF,∴AF=﹣1,当点E在线段BF的延长线上时,如图3,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC=,∴,∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴=,∴BE=AF,由(1)知,CF=EF=CD=,在Rt△BCF中,CF=,BC=2,根据勾股定理得,BF=,∴BE=BF+EF=+,由(2)知,BE=AF,∴AF=+1.即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF的长为﹣1或+1.20、证明见解析【分析】求得判别式并分解得到平方与正数的和,得到判别式大于0即可证明.【详解】证明:.无论为何值,抛物线与轴总有两个交点.【点睛】此题考查一元二次方程的判别式,正确计算并掌握判别式的三种情况即可正确解题.21、(2)-2,-;(2)﹣;(2)﹣.【分析】(2)直接利用根与系数的关系求解;(2)把m、n可看作方程7x2﹣7x﹣2=0,利用根与系数的关系得到m+n=2,mn=﹣,再利用因式分解的方法得到m2n+mn2=mn(m+n),然后利用整体的方法计算;(2)先把t2+99t+29=0变形为29•()2+99•+2=0,则把实数s和可看作方程29x2+99x+2=0的两根,利用根与系数的关系得到s+=﹣,s•=,然后变形为s+4•+,再利用整体代入的方法计算.【详解】解:(2)x2+x2=﹣=﹣2,x2x2=﹣;故答案为﹣2;﹣;(2)∵7m2﹣7m﹣2=0,7n2﹣7n﹣2=0,且m≠n,∴m、n可看作方程7x2﹣7x﹣2=0,∴m+n=2,mn=﹣,∴m2n+mn2=mn(m+n)=﹣×2=﹣;(2)把t2+99t+29=0变形为29•()2+99•+2=0,实数s和可看作方程29x2+99x+2=0的两根,∴s+=﹣,s•=,∴=s+4•+=﹣+4×=﹣.【点睛】本题考查了根与系数的关系:若x2,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x2+x2=﹣,x2x2=.也考查了解一元二次方程.22、(1);(2).【分析】(1)一共有3种等可能的结果,恰为类的概率是(2)根据题意列出所有等可能的结果数,然后根据概率公式求解.【详解】(1)(2)甲乙ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,甲、乙两人投放的垃圾共有9种结果,每种结果出现的可能性相同,其中甲、乙投放的垃圾恰是不同类别的有6种,即(A,B),(A,C),(B,A),(B,C),(C,A),(C,B),∴(甲、乙投放的垃圾是不同类别).【点睛】本题考查了列表法或树状图以及概率的求法.23、(1);(2)点M的坐标为M(,5);(3)存在,Q(,)或(,)或(-3,1)或().【分析】(1)将A(-4,0)、C(0,4)代入y=﹣x2+bx+c中即可得;(2)直线AC的解析式为:,表达出DQ的长度,及△ADC的面积,根据二次函数的性质得出△ADC面积的最大值,从而得出D点坐标,作点D关于对称轴对称的点,确定点M,使DM+AM的值最小;(3)△BQC为等腰三角形,则表达出三边,并对三边进行分类讨论,计算得出Q点的坐标即可.【详解】解:(1)将A(-4,0)、C(0,4)代入y=﹣x2+bx+c中得,解得,∴,(2)直线AC的解析式为:设Q(m,m+4),则D(m,)DQ=()-(m+4)=当m=-2时,面积有最大值此时点D的坐标为D(-2,6),D点关于对称轴对称的点D1(-1,6)直线AD1的解析式为:当时,所以,点M的坐标为M(,5)(3)∵,∴设Q(t,t+4),由得,,∴B(1,0),∴,△BQC为等腰三角形①

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论