




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省广州市荔湾区广雅实验学校九上数学期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列事件属于随机事件的是()A.抛出的篮球会下落B.两枚骰子向上一面的点数之和大于1C.买彩票中奖D.口袋中只装有10个白球,从中摸出一个黑球2.下列几何图形中,是中心对称图形但不是轴对称图形的是()A.圆 B.正方形 C.矩形 D.平行四边形3.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点.已知二次函数的图象上有且只有一个完美点,且当时,函数的最小值为﹣3,最大值为1,则m的取值范围是()A. B. C. D.4.如图,在平面直角坐标系中抛物线y=(x+1)(x﹣3)与x轴相交于A、B两点,若在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,则m的值是()A.6 B.8 C.12 D.165.二次函数图象上部分点的坐标对应值列表如下:则该函数图象的对称轴是()……-3-2-101…………-17-17-15-11-5……A. B. C. D.6.已知关于的方程(1)(2)(3)(4),其中一元二次方程的个数为()个.A.1 B.2 C.3 D.47.如图反比例函数()与正比例函数()相交于两点A,B.若点A(1,2),B坐标是()A.(,) B.(,) C.(,) D.(,)8.已知点都在函数的图象上,则y1、y2、y3的大小关系是()A.y2>y1>y3 B.y1>y2>y3 C.y1>y3>y2 D.y3>y1>y29.不等式的解集是()A. B. C. D.10.关于二次函数,下列说法错误的是()A.它的图象开口方向向上 B.它的图象顶点坐标为(0,4)C.它的图象对称轴是y轴 D.当时,y有最大值4二、填空题(每小题3分,共24分)11.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_____cm.12.如图,已知OP平分∠AOB,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.CP=,PD=1.如果点M是OP的中点,则DM的长是_____.13.已知,则=____14.如图,扇形OAB的圆心角为110°,C是上一点,则∠C=_____°.15.如图,在△ABC中,∠B=45°,AB=4,BC=6,则△ABC的面积是__________.16.若方程x2+2x-11=0的两根分别为m、n,则mn(m+n)=______.17.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为____.18.在一个暗箱里放有m个除颜色外其他完全相同的小球,这m个小球中红球只有4个,每次将球搅匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算m大约是_____.三、解答题(共66分)19.(10分)已知,求的值.20.(6分)我们不妨约定:如图①,若点D在△ABC的边AB上,且满足∠ACD=∠B(或∠BCD=∠A),则称满足这样条件的点为△ABC边AB上的“理想点”.(1)如图①,若点D是△ABC的边AB的中点,AC=,AB=4.试判断点D是不是△ABC边AB上的“理想点”,并说明理由.(2)如图②,在⊙O中,AB为直径,且AB=5,AC=4.若点D是△ABC边AB上的“理想点”,求CD的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C为x轴正半轴上一点,且满足∠ACB=45°,在y轴上是否存在一点D,使点A是B,C,D三点围成的三角形的“理想点”,若存在,请求出点D的坐标;若不存在,请说明理由.21.(6分)在一个不透明的袋子中装有3个乒乓球,分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子中随机摸出1个乒乓球,记下标号后放回,再从袋子中随机摸出1个乒乓球记下标号,用画树状图(或列表)的方法,求两次摸出的乒乓球标号之和是偶数的概率.22.(8分)已知抛物线y=x2﹣2和x轴交于A,B(点A在点B右边)两点,和y轴交于点C,P为抛物线上的动点.(1)求出A,C的坐标;(2)求动点P到原点O的距离的最小值,并求此时点P的坐标;(3)当点P在x轴下方的抛物线上运动时,过P的直线交x轴于E,若△POE和△POC全等,求此时点P的坐标.23.(8分)某便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能够售出240件.经过调查发现:如果每件涨价1元,那么每天就少售20件;如果每件降价1元,那么每天能够多售出40件.(1)如果降价,那么每件要降价多少元才能使销售盈利达到1960元?(2)如果涨价,那么每件要涨价多少元オ能使销售盈利达到1980元?24.(8分)网络销售是一种重要的销售方式.某农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克2元.公司在试销售期间,调查发现,每天销售量与销售单价(元)满足如图所示的函数关系(其中).(1)若,求与之间的函数关系式;(2)销售单价为多少元时,每天的销售利润最大?最大利润是多少元?25.(10分)某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,日销售量与时间第天之间的函数关系式为(,为整数),销售单价(元/)与时间第天之间满足一次函数关系如下表:时间第天123…80销售单价(元/)49.54948.5…10(1)写出销售单价(元/)与时间第天之间的函数关系式;(2)在整个销售旺季的80天里,哪一天的日销售利润最大?最大利润是多少?26.(10分)探究题:如图1,和均为等边三角形,点在边上,连接.(1)请你解答以下问题:①求的度数;②写出线段,,之间数量关系,并说明理由.(2)拓展探究:如图2,和均为等腰直角三角形,,点在边上,连接.请判断的度数及线段,,之间的数量关系,并说明理由.(3)解决问题:如图3,在四边形中,,,,与交于点.若恰好平分,请直接写出线段的长度.
参考答案一、选择题(每小题3分,共30分)1、C【解析】根据随机事件,必然事件,不可能事件概念解题即可.【详解】解:A.抛出的篮球会下落,是必然事件,所以错误,B.两枚骰子向上一面的点数之和大于1,是不可能事件,所以错误,C.买彩票中奖.是随机事件,正确,D.口袋中只装有10个白球,从中摸出一个黑球,,是不可能事件,所以错误,故选C.【点睛】本题考查了随机事件的概念,属于简单题,熟悉概念是解题关键.2、D【分析】根据中心对称图形和轴对称图形的定义逐一判断即可.【详解】A.圆是中心对称图形,也是轴对称图形,故本选项不符合题意;B.正方形是中心对称图形,也是轴对称图形,故本选项不符合题意;C.矩形是中心对称图形,也是轴对称图形,故本选项不符合题意;D.平行四边形是中心对称图形,不是轴对称图形,故本选项符合题意.故选D.【点睛】此题考查的是中心对称图形和轴对称图形的识别,掌握中心对称图形和轴对称图形的定义是解决此题的关键.3、C【分析】根据完美点的概念令ax2+4x+c=x,即ax2+3x+c=0,由题意方程有两个相等的实数根,求得4ac=9,再根据方程的根为=,从而求得a=-1,c=-,所以函数y=ax2+4x+c-=-x2+4x-3,根据函数解析式求得顶点坐标与纵坐标的交点坐标,根据y的取值,即可确定x的取值范围.【详解】解:令ax2+4x+c=x,即ax2+3x+c=0,
由题意,△=32-4ac=0,即4ac=9,
又方程的根为=,
解得a=-1,c=-,
故函数y=ax2+4x+c-=-x2+4x-3,
如图,该函数图象顶点为(2,1),与y轴交点为(0,-3),由对称性,该函数图象也经过点(4,-3).由于函数图象在对称轴x=2左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,且当0≤x≤m时,函数y=-x2+4x-3的最小值为-3,最大值为1,
∴2≤m≤4,
故选:C.【点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征,二次函数的性质以及根的判别式等知识,利用分类讨论以及数形结合的数学思想得出是解题关键.4、B【分析】根据题目中的函数解析式可以求得该抛物线与x轴的交点坐标和顶点的坐标,再根据在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,可知其中一点一定在顶点处,从而可以求得m的值.【详解】∵抛物线y=(x+1)(x-3)与x轴相交于A、B两点,∴点A(-1,0),点B(3,0),该抛物线的对称轴是直线x==1,∴AB=3-(-1)=4,该抛物线顶点的纵坐标是:y=(1+1)×(1-3)=-4,∵在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,∴m==8,故选B.【点睛】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.5、B【分析】当和时,函数值相等,所以对称轴为【详解】解:根据题意得,当和时,函数值相等,所以二次函数图象的对称轴为直线故选B【点睛】本题考查了二次函数的性质.6、C【分析】根据一元二次方程的定义逐项判断即可.【详解】解:(1)ax2+x+1=0中a可能为0,故不是一元二次方程;(2)符合一元二次方程的定义,故是一元二次方程;(3),去括号合并后为,是一元二次方程;(4)x2=0,符合一元二次方程的定义,是一元二次方程;所以是一元二次方程的有三个,
故选:C.【点睛】本题主要考查一元二次方程的定义,即只含有一个未知数且未知数的次数为2的整式方程,注意如果是字母系数的方程必须满足二次项的系数不等于0才可以.7、A【分析】先根据点A的坐标求出两个函数解析式,然后联立两个解析式即可求出答案.【详解】将A(1,2)代入反比例函数(),得a=2,∴反比例函数解析式为:,将A(1,2)代入正比例函数(),得k=2,∴正比例函数解析式为:,联立两个解析式,解得或,∴点B的坐标为(-1,-2),故选:A.【点睛】本题考查了反比例函数和正比例函数,求出函数解析式是解题关键.8、A【分析】根据反比例函数图象上点的坐标特征,将点分别代入函数,求得的,然后比较它们的大小.【详解】解:把分别代入:∵>>,∴>>故选:A.【点睛】本题考查的是反比例函数的性质,考查根据自变量的值判断函数值的大小,掌握判断方法是解题的关键.9、C【解析】移项、合并同类项,系数化为1即可求解.【详解】解:,故选:C.【点睛】考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.10、D【分析】由抛物线的解析式可求得其开口方向、对称轴、函数的最值即可判断.【详解】∵,∴抛物线开口向上,对称轴为直线x=0,顶点为(0,4),当x=0时,有最小值4,故A、B、C正确,D错误;故选:D.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,对称轴为x=h,顶点坐标为(h,k).二、填空题(每小题3分,共24分)11、1.【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解.【详解】设此圆锥的底面半径为r.根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr,解得:r=1.故答案为1.【点睛】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.12、2.【分析】由角平分线的性质得出∠AOP=∠BOP,PC=PD=1,∠PDO=∠PEO=90°,由勾股定理得出,由平行线的性质得出∠OPC=∠AOP,得出∠OPC=∠BOP,证出,得出OE=CE+CO=8,由勾股定理求出,再由直角三角形斜边上的中线性质即可得出答案.【详解】∵OP平分∠AOB,PD⊥OA于点D,PE⊥OB于点E,∴∠AOP=∠BOP,PC=PD=1,∠PDO=∠PEO=90°,∴,∵CP∥OA,∴∠OPC=∠AOP,∴∠OPC=∠BOP,∴,∴,∴,在Rt△OPD中,点M是OP的中点,∴;故答案为:2.【点睛】本题考查了勾股定理的应用、角平分线的性质、等腰三角形的判定、直角三角形斜边上的中线性质、平行线的性质等知识;熟练掌握勾股定理和直角三角形斜边上的中线性质,证明CO=CP是解题的关键.13、1【分析】由,得a=3b,进而即可求解.【详解】∵,∴a=3b,∴;故答案为:1.【点睛】本题主要考查比例式的性质,掌握比例式的内项之积等于外项之积,是解题的关键.14、1【分析】作所对的圆周角∠ADB,如图,根据圆周角定理得到∠ADB=∠AOB=55°,然后利用圆内接四边形的性质计算∠C的度数.【详解】解:作所对的圆周角∠ADB,如图,∴∠ADB=∠AOB=×110°=55°,∵∠ADB+∠C=180°,∴∠C=180°﹣55°=1°.故答案为1.【点睛】本题考查了圆的综合问题,掌握圆周角定理、圆内接四边形的性质是解题的关键.15、6【分析】作辅助线AD⊥BC构造直角三角形ABD,利用锐角∠B的正弦函数的定义求出三角形ABC底边BC上的高AD的长度,然后根据三角形的面积公式来求△ABC的面积即可.【详解】过A作AD垂直BC于D,在Rt△ABD中,∵sinB=,∴AD=AB•sinB=4•sin45°=4×=,∴S△ABC=BC•AD=×6×=,故答案为:【点睛】本题考查了解直角三角形.解答该题时,通过作辅助线△ABC底边BC上的高线AD构造直角三角形,利用锐角三角函数的定义在直角三角形中求得AD的长度的.16、22【分析】
【详解】∵方程x2+2x-11=0的两根分别为m、n,∴m+n=-2,mn=-11,∴mn(m+n)=(-11)×(-2)=22.故答案是:2217、1【分析】利用角角定理证明△BAD∽△BCA,然后利用相似三角形的性质得到,求得BC的长,从而使问题得解.【详解】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴.∵AB=6,BD=4,∴,∴BC=9,∴CD=BC-BD=9-4=1.【点睛】本题考查相似三角形的判定与性质,熟记判定方法准确找到相似三角形对应边是本题的解题关键..18、1【分析】由于摸到红球的频率稳定在25%,由此可以确定摸到红球的概率为25%,而m个小球中红球只有4个,由此即可求出m.【详解】∵摸到红球的频率稳定在25%,∴摸到红球的概率为25%,而m个小球中红球只有4个,∴推算m大约是4÷25%=1.故答案为:1.【点睛】本题考查了利用频率估计概率,其中解题时首先通过实验得到事件的频率,然后利用频率估计概率即可解决问题.三、解答题(共66分)19、9【分析】根据,用表示、、,将它们代入原式,即可得到答案.【详解】解:设,则x=2k,y=3k,z=4k∴=.【点睛】本题考查了比例的性质,将三个未知数用一个未知数表示出来是解题的关键.20、(1)是,理由见解析;(2);(3)D(0,42)或D(0,6)【分析】(1)依据边长AC=,AB=4,D是边AB的中点,得到AC2=,可得到两个三角形相似,从而得到∠ACD=∠B;(2)由点D是△ABC的“理想点”,得到∠ACD=∠B或∠BCD=∠A,分两种情况证明均得到CD⊥AB,再根据面积法求出CD的长;(3)使点A是B,C,D三点围成的三角形的“理想点”,应分两种情况讨论,利用三角形相似分别求出点D的坐标即可.【详解】(1)D是△ABC边AB上的“理想点”,理由:∵AB=4,点D是△ABC的边AB的中点,∴AD=2,∵AC2=8,,∴AC2=,又∵∠A=∠A,∴△ADC∽△ACB,∴∠ACD=∠B,∴D是△ABC边AB上的“理想点”.(2)如图②,∵点D是△ABC的“理想点”,∴∠ACD=∠B或∠BCD=∠A,当∠ACD=∠B时,∵∠ACD+∠BCD=90,∴∠BCD+∠B=90,∴∠CDB=90,当∠BCD=∠A时,同理可得CD⊥AB,在Rt△ABC中,∵∠ACB=90,AB=5,AC=4,∴BC==3,∵,∴,∴.(3)如图③,存在.过点A作MA⊥AC交CB的延长线于点M,∵∠MAC=∠AOC=90,∠ACM=45,∴∠AMC=∠ACM=45,∴AM=AC,∵∠MAH+∠CAO=90,∠CAO+∠ACO=90,∴∠MAH=∠ACO,∴△AHM≌△COA∴MH=OA,OC=AH,设C(a,0),∵A(0,2),B(0,-3),∴OA=MH=2,OB=3,AB=5,OC=AH=a,BH=a-5,∵MH∥OC,∴,∴,解得a=6或a=-1(舍去),经检验a=6是原分式方程的解,∴C(6,0),OC=6.①当∠D1CA=∠ABC时,点A是△BCD1的“理想点”,设D1(0,m),∵∠D1CA=∠ABC,∠CD1A=∠CD1B,∴△D1AC∽△D1CB,∴,∴,解得m=42,∴D1(0,42);②当∠BCA=∠CD2B时,点A是△BCD2“理想点”,可知:∠CD2O=45,∴OD2=OC=6,∴D2(0,6).综上,满足条件的点D的坐标为D(0,42)或D(0,6).【点睛】此题考查相似三角形的判定及性质,通过证明三角形相似得到点是三角形某条边上的“理想点”,通过点是三角形的“理想点”,从而证明出三角形相似,由此得到点的坐标,相互反推的思想的利用,注意后者需分情况进行讨论.21、图形见解析,概率为【分析】根据题意列出树形图,再利用概率公式计算即可.【详解】根据题意,列表如下:共有9种结果,并且它们出现的可能性相等,符合题意的结果有5种,.【点睛】本题考查概率的计算,关键在于熟悉树形图和概率公式.22、(1)A(﹣,0),点C的坐标为(0,﹣2);(2)最小值为,点P的坐标为(,﹣)或(﹣,﹣);(3)P(﹣1,﹣1)或(1,1).【分析】(1)令y=0,解方程求出x的值,即可得到点A、B的坐标,令x=0求出y的值,即可得到点C的坐标;(2)根据二次函数图象上点的坐标特征设点P的坐标为(x,x2﹣2),利用勾股定理列式求出OP2,再根据二次函数的最值问题解答;(3)根据二次函数的增减性,点P在第三四象限时,OP≠1,从而判断出OC与OE是对应边,然后确定出点E与点A或点B重合,再根据全等三角形对应角相等可得∠POC=∠POE,然后根据第三、四象限角平分线上的点到角的两边距离相等的坐标特征利用抛物线解析式求解即可.【详解】解:(1)令y=0,则x2﹣2=0,解得x=±,∵点A在点B右边,∴A(,0),令x=0,则y=﹣2,∴点C的坐标为(0,﹣2);(2)∵P为抛物线y=x2﹣2上的动点,∴设点P的坐标为(x,x2﹣2),则OP2=x2+(x2﹣2)2=x4﹣3x2+4=(x2﹣)2+,∴当x2=,即x=±时,OP2最小,OP的值也最小,最小值为,此时,点P的坐标为(,﹣)或(﹣,﹣);(3)∵OP2=(x2﹣)2+,∴点P在第三四象限时,OP≠1,∵△POE和△POC全等,∴OC与OE是对应边,∴∠POC=∠POE,∴点P在第三、四象限角平分线上,①点P在第三象限角平分线上时,y=x,∴x2﹣2=x,解得x1=﹣1,x2=2(舍去),此时,点P(﹣1,﹣1);②点P在第四象限角平分线上时,y=﹣x,∴x2﹣2=﹣x,解得x1=1,x2=﹣2(舍去),此时,点P(1,1),综上所述,P(﹣1,﹣1)或(1,1)时△POE和△POC全等.【点睛】本题是二次函数综合题型,主要利用了抛物线与坐标轴的交点的求解、二次函数的最值问题、全等三角形的性质、难点在于判断出(3)点P在第三、四象限角平分线上.23、(1)每件要降价1元才能使销售盈利达到1960元;(2)每件要涨价1元或3元オ能使销售盈利达到1980元.【分析】(1)设每件要降价x元,根据盈利=每件的利润×销售量即可列出关于x的方程,解方程即可求出结果;(2)设每件要涨价y元,根据盈利=每件的利润×销售量即可列出关于y的方程,解方程即可求出结果.【详解】解:(1)设每件要降价x元,根据题意,得,解得:,答:每件要降价1元才能使销售盈利达到1960元.(2)每件要涨价y元,根据题意,得,解得:,答:每件要涨价1元或3元オ能使销售盈利达到1980元.【点睛】本题考查了一元二次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.24、(1);(2)当时,每天的销售利润最大,最大是3200元.【分析】(1)设与之间的函数关系式为y=kx+b;利用待定系数法求出k和b的值即可得答案;(2)设每天的销售利润为元,根据利润=(售价-成本)×销量可得出与x的关系式,利用二次函数的性质及一次函数的性质,根据x的取值范围求出的最大值即可得答案【详解】(1)设,把代入,得解得∴;(2)设每天的销售利润为元,当时,,∵600>0,∴随x的增大而增大,∴当时,(元);当时,,∴当时,,综上所述,当时,每天的销售利润最大,最大是3200元.【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车维修工与客户沟通技巧试题及答案
- 针对语文考试的短期复习方案设计试题及答案
- 汽车美容师考试复习重点试题及答案
- 2024-2025公司主要负责人安全培训考试试题突破训练
- 2025年企业安全培训考试试题带答案(培优B卷)
- 2025年管理人员安全培训考试试题考试直接用
- 25年企业级安全培训考试试题答案B卷
- 25年企业管理人员安全培训考试试题带答案(基础题)
- 2025年厂里职工安全培训考试试题及答案参考
- 2024-2025工厂职工安全培训考试试题及答案考点精练
- 季度物业工作总结
- 2024全球感染预防与控制报告
- 第二单元+新音乐启蒙+课件【高效课堂精研】高中音乐粤教花城版必修音乐鉴赏
- 2024年云南省昆明市五华区小升初数学试卷
- 2025年全球创新生态系统的未来展望
- 体育业务知识培训课件
- 《淞沪会战》课件
- 《社区共治共建共享研究的国内外文献综述》4300字
- 软件代码审计与测试作业指导书
- 上消化道出血护理疑难病例讨论记
- 城市轨道交通自动售票机
评论
0/150
提交评论