2025届河南省郑州市名校联考九上数学期末达标检测模拟试题含解析_第1页
2025届河南省郑州市名校联考九上数学期末达标检测模拟试题含解析_第2页
2025届河南省郑州市名校联考九上数学期末达标检测模拟试题含解析_第3页
2025届河南省郑州市名校联考九上数学期末达标检测模拟试题含解析_第4页
2025届河南省郑州市名校联考九上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省郑州市名校联考九上数学期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,四边形内接于,为直径,,过点作于点,连接交于点.若,,则的长为()A.8 B.10 C.12 D.162.将抛物线先向上平移3个单位长度,再向右平移1个单位长度可得抛物线()A. B.C. D.3.如图,矩形AOBC,点C在反比例的图象上,若,则的长是()A.1 B.2 C.3 D.44.己知点都在反比例函数的图象上,则()A. B. C. D.5.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为()A. B. C. D.6.如图,⊙O中,弦AB、CD相交于点P,∠A=40°,∠APD=75°,则∠B的度数是()A.15° B.40° C.75° D.35°7.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径,AC=2,则cosB的值是()A.B.C.D.8.若n<+1<n+1,则整数n为()A.2 B.3 C.4 D.59.下列算式正确的是()A. B. C. D.10.如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B(0,6),点D是⊙P上的一动点.当点D到弦OB的距离最大时,tan∠BOD的值是()A.2 B.3 C.4 D.5二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,AB=6,BC=4,M是AD的中点,N是AB边上的动点,将△AMN沿MN所在直线折叠,得到△,连接,则的最小值是________12.如图,在网格中,小正方形的边长均为1,点,,都在格点上,则______.13.若是方程的根,则的值为__________.14.如图,在中,在边上,,是的中点,连接并延长交于,则______.15.某数学兴趣小组利用太阳光测量一棵树的高度(如图),在同一时刻,测得树的影长为6米,小明的影长为1米,已知小明的身高为1.5米,则树高为_________米.16.某校开展“节约每滴水”活动,为了了解开展活动一个月以来节约用水情况,从九年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况,如下表:节水量()0.20.250.30.4家庭数(个)4637请你估计这400名同学的家庭一个月节约用水的总量大约是_________.17.已知关于x的一元二次方程有两个实数根,,若,满足,则m的值为_____________18.因式分解:ax3y﹣axy3=_____.三、解答题(共66分)19.(10分)如图,⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为(,0),∠CAB=90°,AC=AB,顶点A在⊙O上运动.(1)当点A在x轴的正半轴上时,直接写出点C的坐标;(2)当点A运动到x轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由;(3)设点A的横坐标为x,△ABC的面积为S,求S与x之间的函数关系式.20.(6分)某公司研发了一种新产品,成本是200元/件,为了对新产品进行合理定价,公司将该产品按拟定的价格进行销售,调查发现日销量y(件)与单价x(元/件)之间存在一次函数关系y=﹣2x+800(200<x<400).(1)要使新产品日销售利润达到15000元,则新产品的单价应定为多少元?(2)为使公司日销售获得最大利润,该产品的单价应定为多少元?21.(6分)如图,分别是的边,上的点,,,,,求的长.22.(8分)如图,已知是原点,两点的坐标分别为,.(1)以点为位似中心,在轴的左侧将扩大为原来的两倍(即新图与原图的相似比为),画出图形,并写出点的对应点的坐标;(2)如果内部一点的坐标为,写出点的对应点的坐标.23.(8分)京剧脸谱是京剧艺术独特的表现形式.京剧表演中,经常用脸谱象征人物的性格,品质,甚至角色和命运.如红脸代表忠心耿直,黑脸代表强悍勇猛.现有三张不透明的卡片,其中两张卡片的正面图案为“红脸”,另外一张卡片的正面图案为“黑脸”,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图或列表的方法,求抽出的两张卡片上的图案都是“红脸”的概率.(图案为“红脸”的两张卡片分别记为A1、A2,图案为“黑脸”的卡片记为B)24.(8分)某校为了了解本校七年级学生课外阅读的喜好,随机抽取该校七年级部分学生进行问卷调查(每人只选一种书籍).下图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)这次活动一共调查了名学生;(2)在扇形统计图中,“其他”所在扇形的圆心角等于度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是.25.(10分)如图,四边形ABCD内接于⊙O,AB=17,CD=10,∠A=90°,cosB=,求AD的长.26.(10分)探究问题:⑴方法感悟:如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.∵∠1=∠2,∴∠1+∠3=45°.即∠GAF=∠_________.又AG=AE,AF=AF∴△GAF≌_______.∴_________=EF,故DE+BF=EF.⑵方法迁移:如图②,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.⑶问题拓展:如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).

参考答案一、选择题(每小题3分,共30分)1、C【解析】连接,如图,先利用圆周角定理证明得到,再根据正弦的定义计算出,则,,接着证明,利用相似比得到,所以,然后在中利用正弦定义计算出的长.【详解】连接,如图,∵为直径,∴,∵,∴,而,∴,∵,∴,而,∴,∴,∴,在中,∵,∴,∴,,∵,,∴,∴,即,∴,∴,在中,∵,∴,故选C.【点睛】本题考查了圆周角定理,解直角三角形,熟练掌握“在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径”是解题的关键.2、A【分析】根据抛物线平移的规律:上加下减,左加右减,即可得解.【详解】平移后的抛物线为故答案为A.【点睛】此题主要考查抛物线平移的性质,熟练掌握,即可解题.3、B【分析】根据OB的长度即为点C的横坐标,代入反比例函数的解析式中即可求出点C的纵坐标,即BC的长度,再根据矩形的性质即可求出OA.【详解】解:∵∴点C的横坐标为1将点C的横坐标代入中,解得y=2∴BC=2∵四边形AOBC是矩形∴OA=BC=2故选B.【点睛】此题考查的是根据反比例函数解析式求点的坐标和矩形的性质,掌握根据反比例函数解析式求点的坐标和矩形的性质是解决此题的关键.4、D【解析】试题解析:∵点A(1,y1)、B(1,y1)、C(-3,y3)都在反比例函数y=的图象上,∴y1=-;y1=-1;y3=,

∵>->-1,

∴y3>y1>y1.

故选D.5、B【分析】根据概率公式直接解答即可.【详解】∵共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境,∴他选择的景点恰为丝路花雨的概率为;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.6、D【分析】由,可知的度数,由圆周角定理可知,故能求出∠B.【详解】,

,

由圆周角定理可知(同弧所对的圆周角相等),

在三角形BDP中,

,

所以D选项是正确的.【点睛】本题主要考查圆周角定理的知识点,还考查了三角形内角和为的知识点,基础题不是很难.7、B【解析】要求cosB,必须将∠B放在直角三角形中,由图可知∠D=∠B,而AD是直径,故∠ACD=90°,所以可进行等角转换,即求cosD.在Rt△ADC中,AC=2,AD=2r=3,根据勾股定理可求得,所以.8、B【解析】先估算出的大小,再估算出+1的大小,从而得出整数n的值.【详解】∵2<<3,∴3<+1<4,∴整数n为3;故选:B.【点睛】本题主要考查算术平方根的估算,理解算术平方根的定义,是解题的关键.9、B【解析】根据有理数的减法、绝对值的意义、相反数的意义解答即可.【详解】A.,故不正确;B.,正确;C.,故不正确;D.,故不正确;故选B.【点睛】本题考查了有理数的运算,熟练掌握有理数的减法法则、绝对值的意义、相反数的意义是解答本题的关键.10、B【解析】如图,连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,求出⊙P的半径,进而结合勾股定理得出答案.【详解】解:如图,连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,此时点D到弦OB的距离最大,∵A(8,0),B(0,6),∴AO=8,BO=6,∵∠BOA=90°,∴AB==10,则⊙P的半径为5,∵PE⊥BO,∴BE=EO=3,∴PE==4,∴ED=9,∴tan∠BOD==3,故选B.【点睛】本题考查了圆周角定理以及勾股定理、解直角三角形等知识,正确作出辅助线是解题关键.二、填空题(每小题3分,共24分)11、【分析】由折叠的性质可得AM=A′M=2,可得点A′在以点M为圆心,AM为半径的圆上,当点A′在线段MC上时,A′C有最小值,由勾股定理可求MC的长,即可求A′C的最小值.【详解】∵四边形ABCD是矩形,∴AB=CD=6,BC=AD=4,∵M是AD边的中点,∴AM=MD=2,∵将△AMN沿MN所在直线折叠,∴AM=A′M=2,∴点A′在以点M为圆心,AM为半径的圆上,∴如图,当点A′在线段MC上时,A′C有最小值,∵MC===2,∴A′C的最小值=MC−MA′=2−2,故答案为:2−2.【点睛】本题主要考查了翻折变换,矩形的性质、勾股定理,解题的关键是分析出A′点运动的轨迹.12、【分析】连接AC,根据网格特点和正方形的性质得到∠BAC=90°,根据勾股定理求出AC、AB,根据正切的定义计算即可.【详解】连接AC,由网格特点和正方形的性质可知,∠BAC=90°,根据勾股定理得,AC=,AB=2,则tan∠ABC=,故答案为:.【点睛】本题考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.13、1【分析】根据一元二次方程的解的定义即可求出答案.【详解】由题意可知:2m2−3m+1=0,∴2m2−3m=-1∴原式=-3(2m2−3m)+2019=1.故答案为:1.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.14、【分析】过O作BC的平行线交AC与G,由中位线的知识可得出AD:DC=1:2,根据已知和平行线分线段成比例得出AD=DG=GC,AG:GC=2:1,AO:OE=2:1,再由同高不同底的三角形中底与三角形面积的关系可求出BE:EC的比.【详解】解:如图,过O作OG∥BC,交AC于G,

∵O是BD的中点,

∴G是DC的中点.

又AD:DC=1:2,

∴AD=DG=GC,

∴AG:GC=2:1,AO:OE=2:1,

∴S△AOB:S△BOE=2

设S△BOE=S,S△AOB=2S,又BO=OD,

∴S△AOD=2S,S△ABD=4S,

∵AD:DC=1:2,

∴S△BDC=2S△ABD=8S,S四边形CDOE=7S,

∴S△AEC=9S,S△ABE=3S,

∴==【点睛】本题考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.15、1【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,对应比值相等进而得出答案.【详解】解:根据相同时刻的物高与影长成比例.设树的高度为,则,解得:.故答案为:1.【点睛】此题考查相似三角形的应用,解题关键在于掌握其性质定义.16、1【分析】先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.【详解】解:20名同学各自家庭一个月平均节约用水是:

(0.2×4+0.25×6+0.3×3+0.4×7)÷20=0.3(m3),

因此这400名同学的家庭一个月节约用水的总量大约是:

400×0.3=1(m3),

故答案为:1.【点睛】本题考查了通过样本去估计总体,只需将样本“成比例地放大”为总体即可,关键是求出样本的平均数.17、4【解析】由韦达定理得出x1+x2=6,x1·x2=m+4,将已知式子3x1=|x2|+2去绝对值,对x2进行分类讨论,列方程组求出x1、x2的值,即可求出m的值.【详解】由韦达定理可得x1+x2=6,x1·x2=m+4,①当x2≥0时,3x1=x2+2,,解得,∴m=4;②当x2<0时,3x1=2﹣x2,,解得,不合题意,舍去.∴m=4.故答案为4.【点睛】本题主要考查一元二次方程根与系数的关系,其中对x2分类讨论去绝对值是解题的关键.18、axy(x+y)(x﹣y)【分析】提取公因式axy后剩余的项满足平方差公式,再运用平方差公式即可;【详解】解:ax3y﹣axy3=axy=axy(x+y)(x﹣y);故答案为:axy(x+y)(x﹣y)【点睛】本题主要考查了提公因式法与公式法的运用,掌握提公因式法,平方差公式是解题的关键.三、解答题(共66分)19、(1)点A的坐标为(1,0)时,AB=AC=﹣1,点C的坐标为(1,﹣1)或(1,1﹣);(2)见解析;(3)S==﹣x,其中﹣1≤x≤1.【分析】(1)A点坐标为(1,0),根据AB=AC,分两种情形求出C点坐标;

(2)根据题意过点O作OM⊥BC于点M,求出OM的长,与半径比较得出位置关系;

(3)过点A作AE⊥OB于点E,在Rt△OAE中求AE的长,然后再在Rt△BAE中求出AB的长,进而求出面积的表达式;【详解】(1)点A的坐标为(1,0)时,,点C的坐标为或;(2)如图1中,结论:直线BC与⊙O相切.理由如下:过点O作OM⊥BC于点M,∴∠OBM=∠BOM=45°,∴OM=OB•sin45°=1∴直线BC与⊙O相切;(3)过点A作AE⊥OB于点E.在Rt△OAE中,AE2=OA2﹣OE2=1﹣x2,在Rt△BAE中,AB2=AE2+BE2,∴其中﹣1≤x≤1.【点睛】属于圆的综合题,考查直线和圆的位置关系,勾股定理,三角形的面积公式等,注意数形结合思想在解题中的应用.20、(1)要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)为使公司日销售获得最大利润,该产品的单价应定为300元.【分析】(1)根据“总利润=每件的利润×销量”列出一元二次方程即可求出结论;(2)设公司日销售获得的利润为w元,根据“总利润=每件的利润×销量”即可求出w与x的函数关系式,然后利用二次函数求最值即可.【详解】(1)根据题意得,(﹣2x+800)(x﹣200)=15000,解得:x1=250,x2=350,答要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)设公司日销售获得的利润为w元,根据题意得,w=y(x﹣200)=(﹣2x+800)(x﹣200)=﹣2x2+1200x﹣160000=﹣2(x﹣300)2+20000,∵﹣2<0,∴当x=300时,获得最大利润为20000元,答:为使公司日销售获得最大利润,该产品的单价应定为300元.【点睛】此题考查的是一元二次方程的应用和二次函数的应用,掌握实际问题中的等量关系和利用二次函数求最值是解决此题的关键.21、【分析】先求出AD的长,再根据平行线分线段成比例定理,即可求出AC.【详解】解:∵,,∴.∵,∴.∵∴.∴.【点睛】此题考查的是平行线分线段成比例定理,掌握利用平行线分线段成比例定理列出比例式是解决此题的关键.22、(1)如图,即为所求,见解析;点的对应点的坐标为,点的对应点的坐标为;(2)点的对应点的坐标为.【分析】(1)延长BO,CO到B′、C′,使OB′、OC′的长度是OB、OC的2倍.顺次连接三点即可;

(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M的坐标为(x,y),写出M的对应点M′的坐标为(-2x,-2y).【详解】(1)如图,即为所求,点的对应点的坐标为,点的对应点的坐标为.(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M的坐标为(x,y),写出M的对应点M′的坐标为(-2x,-2y).【点睛】考查了直角坐标系和相似三角形的有关知识,注意做这类题时,性质是关键,看图也是关键.很多信息是需要从图上看出来的.23、【分析】根据题意画出树状图,求出所有的情况数和两次抽取的卡片上都是“红脸”的情况数,再根据概率公式计算即可.【详解】画树状图为:由树状图可知,所有可能出现的结果共有9种,其中两次抽取的卡片上都是“红脸”的结果有4种,所以P(两张都是“红脸”),答:抽出的两张卡片上的图案都是“红脸”的概率是.【点睛】本题考查了概率的求法.用到的知识点为数状图和概率,概率=所求情况数与总情况数之比,关键是根据题意画出树状图.24、(1)200;(2)36;(3)补图见解析;(4)180名.【分析】(1)根据条形图可知喜欢阅读“小说”的有80人,根据在扇形图中所占比例得出调查学生总数;(2)根据条形图可知阅读“其他”的有20人,根据总人数可求出它在扇形图中所占比例;(3)求出第3组人数画出图形即可;(4)根据喜欢阅读“科普常识”的学生所占比例,即可估计该年级喜欢阅读“科普常识”的人数.【详解】解:(1)80÷40%=200(人),故这次活动一共调查了200名学生.(2)20÷200×360°=36°,故在扇形统计图中,“其他”所在扇形的圆心角等于36°.(3)200-80-40-20=60(人),即喜欢阅读“科普常识”的学生有60人,补全条形统计图如图所示:(4)60÷200×100%=30%,600×30%=180(人),故估计该年级喜欢阅读“科普常识”的人数为180.25、AD=1.【解析】根据圆内接四边形的对角互补得出∠C=90°,∠ABC+∠ADC=180°.作AE⊥BC于E,DF⊥AE于F,则CDFE是矩形,EF=CD=2.解Rt△AEB,得出BE=AB•cos∠ABE=,AE=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论